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12 Radiative losses and radiation reaction

In Chapters 8, 9, and 10 we examined gravitational phenomena that take place in the
near zone, the region of space which contains the source of the gravitational field, and
which is confined to a radius R that is much smaller than λc, the characteristic wavelength
of the emitted radiation. This near-zone physics excluded radiative phenomena, and the
dynamics of the system was entirely conservative. In Chapter 11 we moved to the wave
zone, situated at a distance R that is much larger than λc, and studied the gravitational
waves produced by processes taking place in the near zone; this wave-zone physics is all
about radiative phenomena. In the first part of this chapter we continue our exploration of
wave-zone physics by describing how gravitational waves transport energy, momentum, and
angular momentum away from their source. These radiative losses imply that the near-zone
physics cannot be strictly conservative, and in the second part of the chapter we identify the
radiation-reaction forces which produce the required dissipation within the system. This
chapter, therefore, is all about the linkage between the near and wave zones.

Radiative losses and radiation reaction are subtle topics in general relativity, and the
mathematical description of these phenomena is technically demanding. To ease our entry
into this subject, in Sec. 12.1 we first review the situation in the simpler context of flat-
spacetime electromagnetism. We return to gravity in Sec. 12.2, in which we develop a
general description of radiative losses in general relativity. This relies on two major pillars:
the Landau–Lifshitz formulation of the Einstein field equations, as reviewed in Chapter 6,
and a shortwave approximation, in which the gravitational potentials are expanded in
powers of λc/R � 1; this approximation is quite independent of the post-Newtonian and
post-Minkowskian expansions introduced in previous chapters. In Sec. 12.3 we apply
the general formalism to slowly-moving systems, thereby incorporating a post-Newtonian
expansion within the shortwave approximation. In this context the radiative losses can be
computed in terms of the mass and current multipole moments of the matter distribution; at
the leading order we obtain the famous quadrupole formula for the rate at which gravitational
waves remove energy from the system. In Sec. 12.4 we explore a number of astrophysical
implications of these radiative losses.

In Sec. 12.5 we return to the near zone and identify the gravitational potentials that
are involved in the dissipative dynamics of the system; these radiation-reaction terms are
seen to occur at 2.5pn order in a post-Newtonian expansion of the potentials. We apply
them to fluid dynamics in Sec. 12.6, and to the motion of an N -body system in Sec. 12.7.
In Sec. 12.8 we simplify the description of the radiation-reaction potentials and forces
by constructing transformations from the original (harmonic) spacetime coordinates to
alternative coordinates; as special cases we shall encounter the Burke–Thorne and Schäfer
radiation-reaction gauges. And finally, in Sec. 12.9 we analyze the equations that govern
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625 12.1 Radiation reaction in electromagnetism

the dissipative dynamics of a binary system of gravitating bodies, focusing on the secular
changes that occur in the orbital motion.

12.1 Radiation reaction in electromagnetism

Before we mount our direct attack on radiative losses and radiation reaction in gravitating
systems, we take a moment to explore these themes in the simpler context of electromag-
netism. To keep the discussion as simple as possible we ignore gravity entirely (so that
the spacetime is flat), and we assume that the motion of the charged bodies is slow. This
restricted situation is sufficient for our purposes: it features all of the essential physics that
we shall encounter in the gravitational case, and this physics can be explored without the
conceptual and technical difficulties that appear in the gravitational case. We shall describe
the major differences between the two cases at the end of this section.

12.1.1 System of charged bodies

As in Chapter 9 we examine a system of well-separated bodies moving under the influence of
their mutual interactions; each body consists of a perfect fluid described by its mass density
ρ, pressure p, and velocity field v. What is new here is that each body also possesses a
charge distribution described by a charge density ρe and a current density j e = ρev, and
that the interaction between bodies is mediated by electromagnetism instead of gravity.

Once more we work in terms of the center-of-mass variables that were first introduced
in Sec. 1.6.5. The mass of body A is m A := ∫

A ρ d3x , and its center-of-mass is situated
at r A := m−1

A

∫
A ρ x d3x . The velocity vector of body A is vA := m−1

A

∫
A ρ v d3x , and its

acceleration is given by

m AaA :=
∫

A
ρ

dv

dt
d3x . (12.1)

In addition to these quantities we introduce the body’s total charge

qA :=
∫

A
ρe d3x, (12.2)

which we take to be non-vanishing. Each body is assumed to be reflection-symmetric about
its center-of-mass, in the sense specified back in Sec. 9.1.2. And each body is assumed to
be moving slowly, in the sense that vA � c. This implies that the bodies are situated deep
within the near zone, as was first explained back in Sec. 6.3.2.

The total dipole moment of the charge distribution plays an important role in our discus-
sion. This vector is defined by

I e(t) :=
∫

ρe x d3x, (12.3)
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626 Radiative losses and radiation reaction

and the continuity equation ∂tρe + ∇ · j e = 0 ensures that its time derivative is given by

İ e =
∫

j e d3x . (12.4)

The total dipole moment can also be expressed as I e = ∑
A

∫
A ρe(r A + x̄) d3 x̄ , with x̄

denoting the position of a fluid element relative to the center-of-mass of each body. Inte-
gration of ρe x̄ produces zero when the charge distribution is reflection-symmetric about
the center-of-mass, and under these circumstances we obtain the simple expression

I e =
∑

A

qA r A (12.5)

for the total dipole moment.
The equations that govern the coupled dynamics of the bodies and their electromagnetic

field consist of Maxwell’s equations

∇ · E = 1

ε0
ρe, (12.6a)

∇ · B = 0, (12.6b)

∇ × E = −∂ B

∂t
, (12.6c)

∇ × B = μ0 j e + ε0μ0
∂ E

∂t
, (12.6d)

in which E is the electric field and B the magnetic field, and the generalization of Euler’s
equation given by

ρ
dv

dt
= −∇ p + ρe(E + v × B). (12.7)

The coupling constants ε0 and μ0 are related to the speed of light by ε0μ0 = c−2.
Substitution of Eq. (12.7) into Eq. (12.1) yields

m AaA =
∫

A
ρe E d3x +

∫
A
ρev × B d3x . (12.8)

Our first task in this section is to evaluate the right-hand side of Eq. (12.8) to leading order
in an expansion in powers of vA/c, which we shall refer to a “post-Coulombian expansion,”
in an obvious analogy with the post-Newtonian expansions of preceding chapters. The
answer, of course, is the well known Coulomb law, given by Eq. (12.18) below. We shall,
nevertheless, provide a fairly detailed derivation of this equation, because this allows us
to establish a number of results used in the derivation of the radiation-reaction force in
Sec. 12.1.4.

12.1.2 Motion of charged bodies

To obtain aA we must first compute the fields E and B, and this requires integration
of Maxwell’s equations. The homogeneous equations are solved automatically when we

cmw
Inserted Text
 as
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627 12.1 Radiation reaction in electromagnetism

express the fields as

E = −∂ A

∂t
− ∇�, B = ∇ × A, (12.9)

in terms of a vector potential A and a scalar potential �. The potentials can be freely
altered by a gauge transformation of the form � → � − ∂tχ , A → A + ∇χ , in which χ

is an arbitrary scalar function; the transformation leaves the fields unchanged. The gauge
freedom can be exploited to enforce the Lorenz gauge condition

∇ · A + 1

c2

∂�

∂t
= 0, (12.10)

and in this gauge the inhomogeneous Maxwell equations reduce to the wave equations

�� = −4πκ ρe, �A = −4πκ

c2
j e, (12.11)

for the potentials; here κ := (4πε0)−1.
The solutions to the wave equations are

�(t, x) = κ

∫
ρe(t − |x − x′|/c, x′)

|x − x′| d3x ′, (12.12a)

A(t, x) = κ

c2

∫
j e(t − |x − x′|/c, x′)

|x − x′| d3x ′, (12.12b)

in which the integration domains are limited to the volume occupied by the charge dis-
tribution. Techniques to evaluate such retarded integrals in the near zone were developed
in Sec. 6.3.4. The main strategy is to express the delayed time dependence of each source
function as a Taylor expansion about the current time t . For example, we express the charge
density ρe as

ρe(t − |x − x′|/c) = ρe − 1

c
|x − x′|∂ρe

∂t
+ 1

2c2
|x − x′|2 ∂2ρe

∂t2

− 1

6c3
|x − x′|3 ∂3ρe

∂t3
+ O(c−4), (12.13)

in which each term on the right-hand side is evaluated at time t ; the slow-motion condition
ensures that each term is smaller than the preceding one by a factor of order vA/c.

To leading order in a post-Coulombian expansion (0pc order), the scalar potential is
given by � = Ue + O(c−2), where

Ue(t, x) = κ

∫
ρe(t, x′)
|x − x′| d3x ′ (12.14)

is an instantaneous potential of a sort encountered before in the context of Newtonian and
post-Newtonian gravity. It is easy to show that the term of order c−1 in � vanishes by virtue
of charge conservation. The corresponding expression for the vector potential is of order
c−2 and makes no leading-order contribution to the equations of motion; it participates at
1pc order, along with the neglected terms of order c−2 in �.
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628 Radiative losses and radiation reaction

Substitution of the potentials into Eq. (12.9), and these fields into Eq. (12.8), produces

m Aa j
A = −

∫
A
ρe∂ jUe d3x ′ + O(c−2), (12.15)

an expression that is familiar from Newtonian gravity. As in Chapters 1 and 9 the potential
can be decomposed as Ue = Ue,A + Ue,¬A, in terms of a piece Ue,A sourced by body A and
an external piece Ue,¬A sourced by the remaining bodies. As before the body’s self-field
does not contribute to the force, and the external potential can be expressed as a Taylor
expansion about the center-of-mass r A – refer to Eq. (9.89). Our assumption that the bodies
are well separated allows us to retain only the leading term in this expansion, and we arrive
at

m Aa j
A = −qA∂ jUe,¬A(t, r A) + O(c−2). (12.16)

In addition to the post-Coulombian corrections of order c−2, this expression for the force
neglects terms that are smaller by a factor of order (RA/rAB)2 � 1, in which RA is the size
of body A while rAB is the typical inter-body distance.

The remaining steps are also familiar from Chapters 1 and 9. We differentiate the external
potential, evaluate the result at x = r A, and take the limit of well-separated bodies. We
arrive at

∂ jUe,¬A(t, r A) = −
∑
B �=A

κqB
n j

AB

r2
AB

, (12.17)

where nAB := (r A − r B)/|r A − r B | is a unit vector that points from body B to body A,
and rAB := |r A − r B |. Our final expression for the force acting on body A is then

m AaA =
∑
B �=A

κqAqB

r2
AB

nAB + O(c−2), (12.18)

a result that can be obtained directly from Newtonian gravity by making the replacements
G → κ , m A → −qA (on the right-hand side of the equation only), and m B → qB . Slow-
motion electromagnetism, like slow-motion gravity, is characterized by a force that is
inversely proportional to the squared distance. The main difference concerns the product
of charges: while m Am B is necessarily positive in gravity, qAqB can be of either sign in
electromagnetism; the force can be repulsive as well as attractive.

The (mechanical plus field) energy of the system of charged bodies is given by

E =
∑

A

1

2
m Av2

A +
∑

A

∑
B �=A

κqAqB

2rAB
+ O(c−2), (12.19)

and it is easy to show that the motion keeps the energy constant: d E/dt = 0. The slow-
motion dynamics of charged bodies is conservative.

12.1.3 Radiative losses

The system, however, is known to emit electromagnetic waves, and the radiation takes
energy away from the system. The rate at which it does so, to leading order in a
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629 12.1 Radiation reaction in electromagnetism

post-Coulombian expansion of the radiation, is given by the electric dipole formula,

P = 2κ

3c3

∣∣ Ï e

∣∣2 + O(c−5), (12.20)

in which P is the total energy radiated per unit time, and Ï e is the electric dipole moment of
Eq. (12.5) differentiated twice with respect to time. The terms of order c−5 in Eq. (12.20) are
produced by changes in the magnetic dipole moment and electric quadrupole moment of the
charge distribution; higher-order terms are produced by changes in higher-order multipole
moments. For a system consisting of a single charged body moving on an accelerated
trajectory, we have Ï e = qa, where a is the acceleration, and this yields the well-known
Larmor formula P = (2κq2/3c2)|a|2.

The radiative losses described by the electric dipole formula are not accounted for in the
conservative dynamics described in the preceding subsection. We should expect, however,
that a more accurate treatment of the equations of motion would convert the statement
d E/dt = 0 into something like d E/dt = −P, which properly expresses conservation of
total (mechanical plus field plus radiation) energy in the presence of dissipation. This is our
second main task in this section: To identify the radiation-reaction terms in the equations
of motion, and to show that these produce (something like) the expected energy-balance
equation. The change in the system’s energy will correspond to the rate at which the
radiation-reaction forces do work on the bodies. This is expressed mathematically by

d E

dt
=
∑

A

F A[rr] · vA, (12.21)

in which F A[rr] is the radiation-reaction force acting on body A.

12.1.4 Radiation reaction

Because the radiated powerP scales as c−3 to leading order in a post-Coulombian expansion,
our improved treatment of the equations of motion must include terms of order c−3 in order
to account for radiation-reaction effects. A systematic post-Coulombian expansion of the
equations of motion would therefore commence with Eq. (12.18) at leading order, then
incorporate 1pc terms at order c−2, 1.5pc terms at order c−3, 2pc terms at order c−4, and
so on. Here we shall jump directly from 0pc order to 1.5pc order, and bypass the additional
conservative terms that appear at 1pc order; we shall not pursue the post-Coulombian
expansion beyond this point.

That radiation-reaction terms should appear in the equations of motion with an odd
power of c−1 reflects a deep fact about radiating systems, that they necessarily break the
time-reversal invariance of the underlying theory. Here the radiation is electromagnetic
in nature, and the theory is Maxwell’s electrodynamics. Later in the chapter the radiation
is gravitational in nature, and the theory is Einstein’s general relativity. In each case the
fundamental theory is time-reversal invariant, but the selected solutions specify a direction
for the arrow of time.

In the present context the choice of direction was made in Eqs. (12.12), when we selected
the retarded solutions to the wave equations satisfied by the potentials. This choice is
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630 Radiative losses and radiation reaction

physically well motivated: it produces fields that are causally related to the source (the field
now depends on the past behavior of the source), it produces waves that are propagating
outward, and it produces a transfer of energy away from the source. But to select the
retarded solutions is a choice nevertheless, and this choice is not dictated by the fundamental
equations of Maxwell’s theory. We could easily make a different choice and adopt instead
the advanced solutions to the wave equations. This would produce fields that are in an
anti-causal relation with the source (the field now would depend on the future behavior
of the source), radiation that is propagating inward, and a transfer of energy towards the
source. In terms of radiation reaction, the advanced solutions would give rise to an equation
of the form d E/dt = +P instead of the expected d E/dt = −P, and this would express
the (unphysical) fact that the incoming radiation brings energy to the system. And because
d E/dt is related to the radiation-reaction force by Eq. (12.21), we see that the switch from
retarded to advanced solutions changes the sign of Frr

A.
These considerations lead directly to the expectation that the radiation-reaction force

should involve odd powers of c−1 only, because an advanced solution to the wave equation
can be obtained from a retarded solution by making the substitution c → −c. Such a
change in the sign of c turns outgoing waves into incoming waves, turns the flow of energy
from outward to inward, and changes the sign of the radiation-reaction force. All terms
that come with odd powers of c−1 in the potentials � and A therefore contribute to the
radiation-reaction force; terms that come with even powers of c−1 do not change sign under
the substitution c → −c, and these give rise to the purely conservative part of the force.
To leading order in a post-Coulombian expansion, the radiation-reaction force comes from
terms that scale as c−3 in � and A.

To obtain the radiation-reaction piece of � we return to Eq. (12.13), pluck out the term
of order c−3, and insert it within Eq. (12.12). Proceeding similarly with A, we get

�rr = − κ

6c3

∂3

∂t3

∫
ρe(t, x′)|x − x′|2 d3x ′ + O(c−5), (12.22a)

Arr = − κ

c3

d

dt

∫
j e(t, x′) d3x ′ + O(c−5). (12.22b)

Further manipulations using Eqs. (12.3) and (12.4) reveal that the radiation-reaction poten-
tials are given by

�rr = κ

6c3

(
2x · ...

I e − ...
I

kk
e

)
+ O(c−5), (12.23a)

Arr = − κ

c3
Ï e + O(c−5), (12.23b)

where I kk
e := ∫

ρer2 d3x is the trace of the quadrupole-moment tensor of the charge dis-
tribution. In the scalar potential the electric dipole moment I e is differentiated three times
with respect to t ; in the vector potential it is differentiated twice.

The radiation-reaction fields are obtained by inserting the potentials within Eq. (12.9).
This yields

Err = 2κ

3c3

...
I e + O(c−5), Brr = O(c−5). (12.24)
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631 12.1 Radiation reaction in electromagnetism

We see that the magnetic field vanishes at leading order, and that the electric field depends
on t only; it is uniform within the distribution of charge. Substitution of the fields into
Eq. (12.8) produces

F A[rr] = 2κ

3c3
qA

...
I e + O(c−5). (12.25)

This is the radiation-reaction force acting on body A.

12.1.5 Energy balance

The total energy of the system is given by Eq. (12.19), and differentiation of the right-hand
side with respect to t gives rise to Eq. (12.21), noting that the work done by the conservative
piece of the force accounts for the changes in the system’s potential energy. Substitution of
Eq. (12.25) produces

d E

dt
= 2κ

3c3

...
I e ·

∑
A

qAvA = 2κ

3c3

...
I e · İ e, (12.26)

where we have made use of Eq. (12.5). This can also be expressed as

d E

dt
= d

dt

(
2κ

3c3
Ï e · İ e

)
− 2κ

3c3

∣∣ Ï e

∣∣2 (12.27)

by transferring a time derivative from one dipole moment to the other. This, finally, we
write in the form

d E

dt
= −d E ′

dt
− P, (12.28)

where

E ′ := − 2κ

3c3
Ï e · İ e (12.29)

has the dimension of an energy, and P is the radiated power of Eq. (12.20).
Equation (12.28) is our statement of energy balance, the expression of conservation of

total (mechanical plus field plus radiation) energy. We see, however, that the statement is not
quite the expected d E/dt = −P; the additional term −d E ′/dt requires an interpretation.

The statement of Eq. (12.28) forces us to recognize that the exchange of energy between
the charged bodies and the electromagnetic field may take different forms. First, the kinetic
energy of the bodies may change, and so can the system’s potential energy, as defined by the
second term on the right-hand side of Eq. (12.19); these changes are accounted for by the
term d E/dt in Eq. (12.28). Second, part of the system’s energy is converted into radiation,
which propagates outward and irreversibly leaves the system; this is described by the term
−P in Eq. (12.28). But potential energy and radiation are not the only relevant forms of
field energy; there is also a form that stays bound to the system and is reversibly exchanged
between the electromagnetic field and the charged bodies. This is what is described by E ′,
as defined by Eq. (12.29). Equation (12.28) therefore describes an exchange between all
relevant forms of energy: kinetic, potential, radiation, and bound field energy.
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632 Radiative losses and radiation reaction

There are ways by which the statement of Eq. (12.28) can be simplified and turned into
the expected d E/dt = −P. One way is to assume that the conservative motion is periodic,
or that it begins and ends in a static state, and to average Eq. (12.28) over time. This
produces a coarse-grained statement of energy balance,

〈d E/dt〉 = −〈P〉. (12.30)

The contribution from d E ′/dt no longer appears, because its average is proportional to the
total change in E ′ over the time interval, and this vanishes at order c−3 under the stated
conditions. Another way is to modify the definition of the system’s total energy so that
it now includes the bound field energy E ′. The redefinition E → E + E ′ obviously turns
Eq. (12.28) into the simpler statement d E/dt = −P.

Box 12.1 Redefining the energy

The reader might feel that it is inappropriate to redefine the energy E for the sole purpose of obtaining a
desired statement of energy balance. We wish to reassure the reader: there was nothing sacred about the
initial definition of the system’s energy, and a redefinition can be entirely appropriate. It is helpful to recall
that the energy is not some rigid quantity defined a priori, but that its definition is provided by the dynamics
of themechanical system. For a conservative system, it is whatever function of the positions and velocities that
happens to be conserved. Because the zero point of energy is not fixed (at least at the non-quantum level),
the definition is not even unique.
Energy is not even conserved for radiative systems, and its definition is evenmore ambiguous. A good defi-

nition of energywould be one that is approximately constant when the radiation can be ignored, and one that
accurately reflects the long-term behavior of the system under the damping effects of the radiation leaving
the system. The short-term behavior reveals fluctuations caused by a reversible transfer of energy between
the system and the field, and an ambiguity arises because it is impossible to decompose the field energy into a
piece that is unambiguously associated with the reversible transfer, and another piece that is unambiguously
associated with the radiation. The ambiguity, however, is largely irrelevant when the fluctuations are small
compared with the dominant contribution to the energy, which is approximately conserved in the short term.
In the electromagnetic case examined here, the Coulombian energy E is of ordermv2 ∼ κq2/r , and

the field energy E ′ can be seen from Eq. (12.29) to be of order κ2q4v/(mc3r2) ∼ E(v/c)3. This is a
small correction that leads to a small ambiguity.
These remarks apply to any dissipative system. They keep their relevance when we turn to gravity, and

establish an equivalence between thework done by the radiation-reaction forces and the energy carried away
by gravitational waves.

12.1.6 Looking ahead: gravity

The remainder of this chapter is devoted to a discussion of radiative losses and radiation
reaction in the context of gravity. The conservative dynamics of fluids and bodies moving
under a mutual gravitational attraction was explored in Chapters 8, 9, and 10, where the
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equations of motion were obtained accurately through the first post-Newtonian order. The
gravitational waves emitted by these bodies were examined in Chapter 11, and our first
order of business in this chapter (Sec. 12.2) is to calculate the rates at which the waves
transport energy, linear momentum, and angular momentum away from the system. In
the case of radiated energy, we shall derive (Sec. 12.3) the famous quadrupole formula,
the gravitational analogue of Eq. (12.20); because there is no dipole radiation in general
relativity, the radiated power P must involve the quadrupole-moment tensor of the mass
distribution. Astrophysical consequences of radiative losses are explored in Sec. 12.4. We
then (Sec. 12.5) obtain the gravitational potentials – analogous to those of Eqs. (12.23) –
that give rise to the gravitational radiation-reaction force, which is computed and applied
in Secs. 12.6 through 12.9.

The treatment of the gravitational case involves computations that are much more chal-
lenging than those reviewed in this section. The reason for this is two-fold. First, general
relativity, even in its weak-field and slow-motion formulation, is intrinsically more com-
plicated than Maxwell’s electrodynamics. And second, the absence of dipole radiation
implies that the radiated power scales as c−5 instead of c−3, which was the scaling ob-
served in electromagnetism. This implies that the radiation-reaction terms in the equations
of motion will appear at order c−5 in a post-Newtonian expansion, an order that is far
removed from the c−2 order that was achieved back in Chapter 9. In terms of the usual
post-Newtonian counting, we are looking for terms of 2.5pn order in the equations of
motion, while the results obtained in Chapter 9 are accurate only through 1pn order. A
systematic treatment of the equations of motion to this order of accuracy would have to
provide conservative terms at 2pn order in addition to the desired terms at 2.5pn order. It
is a fortunate circumstance, however, that the derivation of the radiation-reaction terms at
2.5pn order is insensitive to the details that appear at 2pn order. We may, therefore, bypass
the 2pn terms entirely, and jump directly to the radiation-reaction terms that actually inter-
est us. This is analogous to what was observed in the electromagnetic case: the radiation-
reaction terms at order c−3 could be derived independently of the conservative corrections at
order c−2.

The difficulties associated with radiative losses and radiation reaction in gravity are
not just technical in nature. There are also conceptual issues that arise as a consequence
of the principle of equivalence. Consider a freely-moving observer in spacetime. As was
discussed at length in Chapter 5, such an observer moves without ever noticing a local
gravitational field, and would therefore assign a zero value to any proposed measure of
gravitational energy flux. This is quite unlike the value that he would assign to the Poynting
vector μ−1

0 E × B, which measures the flux of electromagnetic energy. Given, then, that the
principle of equivalence forbids the very existence of a “gravitational Poynting vector,” how
is one to calculate the total radiated power P? In electromagnetism one simply integrates
the normal component of the Poynting vector over a spherical surface situated in the wave
zone, and the result is the electric-dipole formula of Eq. (12.20). A corresponding recipe
is harder to identify in general relativity, and any proposed recipe must be handled with
care in light of the principle of equivalence. That systems of moving bodies governed by
gravitational interactions must lose energy to gravitational radiation is, however, very clear
on physical grounds.
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12.2 Radiative losses in gravitating systems

Our main task in this section is to establish the validity of balance equations for energy,
momentum, and angular momentum, and to find expressions for the rates at which gravi-
tational waves carry energy, momentum, and angular momentum away from their source.
We pursue a dual goal: to provide a sound foundation for a discussion of radiative losses,
and to develop a practical formalism to calculate these losses.

12.2.1 Balance equations

Our description of radiative losses in gravitating systems relies on the Landau–Lifshitz
formulation of the Einstein field equations reviewed in Sec. 6.1; in particular, it relies
on the conservation identities derived in Sec. 6.1.3. These consist of balance equations
involving the energy, linear momentum, and angular momentum of the gravitating system.
The energy-balance equation was first displayed in Eq. (6.30), which we copy here as

d E

dt
= −P, (12.31)

where E = Mc2 is the total energy contained in the system, as defined by Eq. (6.36), while

P := c

∮
∞

(−g)t0k
LL d Sk (12.32)

is the rate at which gravitational waves remove energy from the system. The momentum-
balance equation was first displayed in Eq. (6.31), which we copy as

d P j

dt
= −F j , (12.33)

where P j is the total momentum of the system, as defined by Eq. (6.37), while

F j :=
∮

∞
(−g)t jk

LL d Sk (12.34)

is the rate at which gravitational waves remove (linear) momentum from the system. And
finally, the statement of conservation of angular momentum is

d J jk

dt
= −T jk, (12.35)

where J jk is the total angular-momentum tensor, as defined by Eq. (6.38), while

T jk :=
∮

∞

[
x j (−g)t kn

LL − xk(−g)t jn
LL

]
d Sn (12.36)

is the rate at which gravitational waves remove angular momentum from the system;
Eq. (12.35) is a re-statement of Eq. (6.34). The angular-momentum vector is given by
J j = 1

2ε
j
pq J pq , and we may define a “gravitational-wave torque vector” byT j := 1

2ε
j
pqT

pq ,

so that d J j/dt = −T j . In these equations, tαβ

LL is the Landau–Lifshitz pseudotensor of
Eq. (6.5). The surface integrals are evaluated in the limit R → ∞, and d Sj = R2 N j d�
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is an outward-directed surface element; we use the notation of Chapter 11, with R := |x|,
N := x/R, and d� is an element of solid angle in the direction of the unit vector N .

The Landau–Lifshitz formulation of the Einstein field equations supplies a sound foun-
dation for a description of radiative losses because it achieves three essential goals: first, it
provides expressions for the radiative fluxes P, F j , and T jk ; second, it provides definitions
for the total energy E , total momentum P j , and total angular momentum J jk ; and third,
it establishes precise balance equations that describe how E , P j , and J jk change as a
result of gravitational-wave emissions. It should be pointed out that this formulation is not
unique: a different formulation of the Einstein field equations, based on other variables,
other coordinate systems, and a different choice of pseudotensors, may well produce dif-
ferent definitions for E , P j , and J jk , and different expressions for P, F j , and T jk . These
differences are of no concern, however, so long as the proposed definitions for E , P j , and
J jk are physically sensible. As we have seen previously in Secs. 7.3.2, 8.4.5, and 8.4.6,
the Landau–Lifshitz definitions, when implemented within post-Minkowskian theory or
post-Newtonian theory, are physically sensible.

12.2.2 The shortwave approximation

We begin by evaluating the gravitational-wave fluxes P, F j , and T jk . We wish to do so
in a framework that is broader than, but includes, the post-Minkowskian approximation
formulated in Chapters 6 and 7. The post-Minkowskian approximation is based on an
expansion of the gravitational potentials hαβ in powers of the gravitational constant G.
Our approach here is distinct, and our expressions will be accurate to all orders in G.
Our approach is based on a different type of approximation, which, following Misner,
Thorne, and Wheeler (1973), we term shortwave approximation. It relies on the fact that
we are interested in the gravitational potentials in the far-away wave zone, as introduced
in Sec. 11.1.1. In this region of spacetime R is much larger than λc, the characteristic
wavelength of the gravitational radiation, and we exploit this fact by using λc/R � 1 as an
expansion parameter. The shortwave approximation has already been invoked within the
context of post-Minkowskian theory in Chapter 7, refer to Box 7.7, and it has also been
invoked independently of the post-Minkowskian approximation back in Sec. 11.1. In this
subsection we develop it more systematically.

The shortwave approximation is based on an expansion of the gravitational potentials in
powers of λc/R, where R := |x| is the distance to the system’s center-of-mass. We write

hαβ = (λc/R) f αβ

1 + (λc/R)2 f αβ

2 + · · · , (12.37)

in which f αβ
n is assumed to be a function of retarded time τ := t − R/c and the angles

contained in the unit vector N := x/R. In Sec. 11.1 the shortwave expansion was truncated
at leading order; here we keep track of higher-order terms, because they are needed in our
computation of the angular-momentum flux T jk . As was pointed out previously, each f αβ

n

can be considered to be accurate to all orders in the gravitational constant G. A refined
formulation of the approximation would involve the insertion of ln R terms in Eq. (12.37) to
accommodate the presence of wave tails in the gravitational potentials, refer to Sec. 11.3.7.
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Our considerations below are not affected by these logarithmic terms, and for simplicity
we prefer to omit them from the expressions.

The assumed dependence of f αβ
n on retarded time τ := t − R/c is motivated by the fact

that according to Eq. (6.51), the gravitational potentials must satisfy a wave equation of the
form �hαβ = −(16πG/c4)ταβ , where ταβ is the effective energy-momentum pseudotensor
of Eq. (6.52). By virtue of the scaling of hαβ with λc/R, ταβ is guaranteed to be of
order (λc/R)2, and this implies that the time dependence of f αβ

1 must be contained in the
combination t − R/c. The same dependence is then fed into the remaining terms in the
expansion. These considerations rely on the fact that the gravitational potentials are taken
to satisfy the harmonic gauge condition of Eq. (6.49), ∂βhαβ = 0.

Differentiation of the potentials is facilitated by employing the identities ∂ j R = N j

and ∂ j Nk = Pjk/R, where Pjk := δ jk − N j Nk . Recalling that x0 = ct and using these
differentiation rules, we obtain

c∂0hαβ = (λc/R)∂τ f αβ

1 + (λc/R)2∂τ f αβ

2 + · · · , (12.38a)

c∂ j h
αβ = −(λc/R)N j∂τ f αβ

1

− (λc/R)2

(
N j∂τ f αβ

2 + c

λc
N j f αβ

1 − c

λc
P k

j

∂ f αβ

1

∂ N k

)
+ · · · (12.38b)

The expansion of c∂ j hαβ contains a number of contributions at second order. It is easy to see
that the term involving f αβ

2 is smaller than the leading term by a factor of order λc/R � 1.
The terms involving f αβ

1 are multiplied by c/λc = 1/tc, where tc is the characteristic time
scale associated with changes in the potentials, and (c/λc) f αβ

1 is comparable in size to
∂τ f αβ

1 ; these terms also are smaller than the leading term by a factor of order λc/R � 1.
To leading order in the shortwave approximation we can write that

∂μhαβ = −1

c
kμ∂τ hαβ + O(λ2

c/R2), (12.39)

in which kμ := (−1, N) is a spacetime vector that satisfies the null condition ημνkμkν = 0.
At this order the only spatial dependence that matters is contained in the overall factor of
R−1 and in the proper time τ ; the dependence contained in the vector N is subdominant,
and appears at the next order.

12.2.3 Energy andmomentum fluxes

To compute P and F j we insert Eq. (12.39) within the Landau–Lifshitz pseudotensor of
Eq. (6.5) and get, after much simplification,

(−g)tαβ

LL = c2

32πG

(
∂τ h jk

TT ∂τ hTT
jk

)
kαkβ, (12.40)

where kα = (1, N) and

h jk
TT = (tt) jk

pq h pq , (tt) jk
pq := P j

p Pk
q − 1

2
P jk Ppq , (12.41)

is the transverse-tracefree piece of the gravitational potentials, as defined back in Sec. 11.1.7.
This result is invariant under any gauge transformation (described in Sec. 11.1.5)
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that preserves the harmonic gauge conditions ∂βhαβ = 0. The easiest way to establish
Eq. (12.40) is therefore to refine the harmonic gauge to the TT gauge of Sec. 11.1.5,
in which h00 = O(λ2

c/R2), h0 j = O(λ2
c/R2), and h jk = h jk

TT + O(λ2
c/R2); the properties

N j h
jk
TT = 0 = δ jkh jk

TT simplify the calculations significantly.
The expression of Eq. (12.40) is valid to leading order in an expansion in powers of λc/R;

it is of second order, and it neglects terms of order (λc/R)3. This expression is sufficiently
accurate for substitution within Eqs. (12.32) and (12.34), and we immediately obtain

P = c3

32πG

∫
R2
(
∂τ h pq

TT ∂τ hTT
pq

)
d� (12.42)

and

F j = c2

32πG

∫
R2 N j

(
∂τ h pq

TT ∂τ hTT
pq

)
d�. (12.43)

Because the integral is evaluated in the limit R → ∞, higher-order terms in the expansion
of (−g)tαβ

LL do not contribute to P and F j . The expressions of Eqs. (12.42) and (12.43) are
exact.

The energy and momentum fluxes can alternatively be expressed in terms of the
gravitational-wave polarizations h+ and h× introduced in Sec. 11.1.7. These are defined by
the decomposition

h jk
TT = h+

(
ϑ jϑk − ϕ jϕk

)+ h×
(
ϑ jϕk + ϕ jϑk

)
(12.44)

of the TT field in terms of the transverse basis provided by the unit vectors ϑ :=
[cos ϑ cos ϕ, cos ϑ sin ϕ,− sin ϑ] and ϕ := [− sin ϕ, cos ϕ, 0]; these were introduced in
Eqs. (11.37) and (11.38) and they are orthogonal to N := [sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ].
After inserting this decomposition within Eqs. (12.42) and (12.43) we obtain

P = c3

16πG

∫
R2
[(

∂τ h+
)2 + (

∂τ h×
)2
]

d� (12.45)

and

F j = c3

16πG

∫
R2 N j

[(
∂τ h+

)2 + (
∂τ h×

)2
]

d�. (12.46)

These expressions, like Eqs. (12.42) and (12.43), are exact within the shortwave approxima-
tion. They are also accurate to all orders in a post-Minkowskian expansion of the potentials
in powers of G.

12.2.4 Angular-momentum flux

The leading-order expression of Eq. (12.40), unfortunately, is not sufficiently accurate
for insertion within Eq. (12.36). This can be seen from that fact that since (−g)t jk

LL is
proportional to N j N k , the integrand in Eq. (12.36) is proportional to (N j N k − N k N j )N n

and therefore vanishes. This is actually a fortunate circumstance, because the presence
of x j = RN j within the integral implies that T jk would otherwise diverge in the limit
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R → ∞. The computation of the angular-momentum flux, therefore, requires terms of
order (λc/R)3 in the expansion of the energy-momentum pseudotensor.

The result

It is wise to state the final answer before we present this long calculation:

T jk = c3

16πG

∫
R2

[
h jp

TT ∂τ hkp
TT − hkp

TT ∂τ h jp
TT − 1

2
∂τ h pq

TT

(
x j∂k − xk∂ j

)
hTT

pq

]
d� . (12.47)

Notice that when x j∂k − xk∂ j acts on the spatial dependence contained in τ := t − R/c
within hTT

pq , or on the overall 1/R dependence, it produces x j N k − xk N j , which vanishes
identically; the operation is sensitive only to the angular dependence contained in N within
hTT

pq . In terms of the gravitational-wave polarizations we have

T jk = − c3

16πG

∫
R2q jk d� (12.48)

with

q jk := (
∂τ h+

)[(
x j∂k − xk∂ j

)
h+ − 2 cosec ϑ

(
e j

z ϕ
k − ϕ j ek

z

)
h×

]

+ (
∂τ h×

)[(
x j∂k − xk∂ j

)
h× + 2 cosec ϑ

(
e j

z ϕ
k − ϕ j ek

z

)
h+

]
, (12.49)

where ez := [0, 0, 1] is a constant unit vector that points in the direction of the z axis, relative
to which the polar angles (ϑ, ϕ) are defined. To go from Eq. (12.47) to Eq. (12.48) we had
to account for the spatial dependence of the transverse basis vectors. If the polarizations
are expressed as functions of τ , ϑ , and ϕ, then the non-vanishing components of q jk are
given explicitly by

qxy = (
∂τ h+

)(
∂ϕh+

)+ (
∂τ h×

)(
∂ϕh×

)
, (12.50a)

q yz = (
∂τ h+

)(− sin ϕ ∂ϑh+ − cot ϑ cos ϕ ∂ϕh+ + 2 cosec ϑ cos ϕ h×
)

+ (
∂τ h×

)(− sin ϕ ∂ϑh× − cot ϑ cos ϕ ∂ϕh× − 2 cosec ϑ cos ϕ h+
)
, (12.50b)

qzx = (
∂τ h+

)(
cos ϕ ∂ϑh+ − cot ϑ sin ϕ ∂ϕh+ + 2 cosec ϑ sin ϕ h×

)
+ (

∂τ h×
)(

cos ϕ ∂ϑh× − cot ϑ sin ϕ ∂ϕh× − 2 cosec ϑ sin ϕ h+
)
. (12.50c)

The expression of Eq. (12.47) was first obtained by Bryce DeWitt in 1971 while teaching a
course on general relativity at Stanford University; his lecture notes, published only recently
in 2011, contain very few details. The calculation was later repeated by Kip Thorne, who
simply stated the final result in his 1980 review article on multipole expansions. Pending
evidence to the contrary, the derivation presented below may well be the only one available
in the literature.
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Derivation

We now proceed with the derivation of Eq. (12.47). Terms that give rise to the subdominant,
(λc/R)3 piece of (−g)t jk

LL are displayed in Eq. (12.38); these are the second-order terms
in ∂μhαβ generated by ∂τ f αβ

2 , N j f αβ

1 , and derivatives of f αβ

1 with respect to the vector
N . In addition to these we have first-order terms in hαβ that enter in the metric gαβ ,
which also appears in the Landau–Lifshitz pseudotensor. A computation of (−g)t jk

LL that
includes all these contributions would be exceedingly tedious. A careful examination,
however, reveals that most do not appear in the final result for T jk , because they produce
terms proportional to N j that cancel out in the end. This analysis allows us to state that f αβ

2

makes no appearance in the final result, and that corrections of order λc/R to the Minkowski
metric ηαβ are similarly irrelevant. The computation, therefore, can be carried out safely
by setting hαβ = (λc/R) f αβ

1 and gαβ = ηαβ ; derivatives of hαβ , however, must be evaluated
accurately to second order in (λc/R), beyond the expression displayed in Eq. (12.39). As we
saw previously, the computation is simplified by adopting the TT gauge for the gravitational
potentials.

A suitable starting point for the computation is

(−g)t jk
LL = c4

16πG

(
−∂ j h pq ∂phkq − ∂kh pq ∂ph jq − ∂0h jp ∂0hkp

+ ∂ph jq ∂ phkq + 1

2
∂ j h pq ∂kh pq

)
, (12.51)

which is obtained from Eq. (6.5) and simplified by incorporating the observations made in
the preceding paragraph. In particular, h jk is taken to be in the TT gauge, so that N j h jk = 0
and δ jkh jk = 0. In addition, all terms proportional to δ jk were discarded, because they cancel
out when inserted within Eq. (12.36).

In Eq. (12.51), the operator ∂ j is understood in the usual way as holding t fixed while
differentiating with respect to x j . To proceed with the calculation, we express ∂ j acting on
a retarded function like h pq in the form

∂ j h
pq = −(N j/c)∂τ h pq + ð j h

pq , (12.52)

where the operator ð j bypasses the retarded-time dependence and operates only on the
remaining spatial dependence. When ð j acts on h pq , it generates a term of second order in
λc/R, while acting with ∂τ produces a first-order term. Keeping our expressions accurate
through order (λc/R)3, we find that Eq. (12.51) becomes

(−g)t jk
LL = c3

16πG

{
N j
(
∂τ h pq

)(
ðphkq − 1

2
ð

kh pq

)
+ N k

(
∂τ h pq

)(
ðph jq − 1

2
ð

j h pq

)

− N p
[(

∂τ h jq
)(

ðphkq
)+ (

∂τ hkq
)(

ðph jq
)]− 1

R

(
h jq∂τ hkq + hkq∂τ h jq

)}
(12.53)

when we discard terms proportional to N j N k that eventually cancel out, and exploit the
following properties of the TT gauge: N j∂τ h jk = 0 and N j ðph jk = −h pk/R. Substitution
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of Eq. (12.53) into Eq. (12.36) produces

T jk = c3

16πG

∫
R3
(
∂τ h pq

)[
N j

ðphkq − N k
ðph jq − 1

2

(
N j

ð
k − N k

ð
j
)
h pq

]
d�.

(12.54)
To bring Eq. (12.54) to the standard form of Eq. (12.47), it is helpful to decompose

the differential operator ð j into longitudinal and transverse pieces according to ð j =
N j ðR + ðT

j , where ðR := N jð j is a partial derivative with respect to R, while ðT
j := P k

j ðk

is the transverse derivative (related to partial derivatives with respect to ϑ and ϕ). Because
Nph pq = 0, it is easy to see that ðR plays no role in the first two terms of Eq. (12.54). The
next step is to integrate these terms by parts. We write(

∂τ h pq
)
N j

ð
T
phkq = ð

T
p

(
∂τ h pq N j hkq

)− ∂τ

(
ð

T
ph pq

)
N j hkq − (

∂τ h pq
)(

ð
T
p N j

)
hkq ,

(12.55)

and observe that in the TT gauge, the harmonic condition ∂αhαq = 0 yields

∂ph pq = −Np∂τ h pq + NpðRh pq + ð
T
ph pq

= −Np R−1h pq + ð
T
ph pq

= ð
T
ph pq

= 0 . (12.56)

With ðT
p N j = P j

p/R we find that

(
∂τ h pq

)
N j

ð
T
phkq = ð

T
p

(
∂τ h pq N j hkq

)− 1

R

(
∂τ h jp

)
hkp, (12.57)

which we insert within Eq. (12.54). The total transverse derivative gives no contribution to
the integral (because the angular domain of integration has no boundary), and we finally
arrive at Eq. (12.47). At this stage the distinction between ð j and ∂ j is no longer important,
because of the antisymmetry of the second group of terms in Eq. (12.47).

To go from Eq. (12.47) to Eq. (12.48) we substitute Eq. (12.44) within the integral and
take into account the fact that the basis vectors ϑ and ϕ depend on position. A simple
calculation shows that their derivatives are given by

R ∂kϑ
j = −N jϑk + cot ϑ ϕ jϕk, (12.58a)

R ∂kϕ
j = −N jϕk − cot ϑ ϑ jϕk, (12.58b)

and ez appears in Eq. (12.49) by virtue of the identity ez = cos ϑ N − sin ϑ ϑ .
The manipulations that lead to Eq. (12.50) involve the relations x∂y − y∂x = ∂ϕ , y∂z −

z∂y = − sin ϕ ∂ϑ − cot ϑ cos ϕ ∂ϕ , and z∂x − x∂z = cos ϕ ∂ϑ − cot ϑ sin ϕ ∂ϕ , which are
well known from the theory of orbital angular momentum in quantum mechanics.

12.2.5 Isaacson’s effective energy-momentum tensor

In a series of two papers published in 1968, Richard Isaacson formulated and developed the
shortwave approximation of Sec. 12.2.2. His formulation was more general and ambitious
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than what was presented there. Instead of limiting his attention to the far-away wave zone of
an asymptotically-flat spacetime, Isaacson considered a high-frequency gravitational wave
in an arbitrary vacuum region of spacetime in which the radius of curvature R is large
compared to λc, and developed a systematic expansion of the field equations in powers of
λc/R. Writing the exact Einstein tensor as Gαβ = Gαβ

0 + Gαβ

1 + Gαβ

2 + · · · , where Gαβ

0

is the Einstein tensor of the background spacetime, Gαβ

1 the correction of order λc/R,
and Gαβ

2 the correction of order (λc/R)2, he showed that Gαβ

1 = 0 produces a linearized
propagation equation for the gravitational waves, while

Gαβ

0 = 8πG

c4
T αβ

eff := −Gαβ

2 + · · · (12.59)

determines how the energy-momentum in the waves affects the background spacetime.
After a suitable averaging procedure to eliminate terms that oscillate rapidly, the Isaacson
effective energy-momentum tensor T αβ

eff can be involved in equations such as Eqs. (12.32),
(12.34), and (12.36) to compute fluxes of energy, linear momentum, and angular momen-
tum. Computation of the effective energy-momentum tensor in the far-away wave zone of
an asymptotically-flat spacetime actually returns the right-hand side of Eq. (12.40), and
therefore leads to the same results as Eqs. (12.42) and (12.43).

There are two reasons why the Isaacson approach fails to provide a complete foundation
for the description of radiative losses in gravitating systems. First, while the Isaacson
approach correctly reproduces the expressions for P and F j that we obtained in Sec. 12.2.3,
it does not provide definitions for the system’s total energy E and total momentum P j .
In other words, Isaacson manages to supply the right-hand sides of the balance equations
(12.31) and (12.33), but fails to reveal the identity of the left-hand sides. Since the main
purpose of obtaining expressions for P and F j is to involve them in statements of energy
and momentum balance, the Isaacson approach falls short of providing a complete package.
The second failure of the Isaacson approach has to do with the angular-momentum flux
T jk . Isaacson’s effective energy-momentum tensor agrees with Eq. (12.40) in the far-away
wave zone of an asymptotically-flat spacetime, but we know from Sec. 12.2.4 that this
approximation is too crude to deliver the expression of Eq. (12.47); the flux of angular
momentum simply cannot be calculated in the Isaacson approach.

12.3 Radiative losses in slowly-moving systems

As was indicated in Sec. 12.2.2, the formalism developed in Sec. 12.2 rests on a shortwave
approximation which permits an expansion of the gravitational potentials in powers of
λc/R � 1. This approximation scheme is quite independent of the post-Minkowskian and
post-Newtonian approximations developed in preceding chapters, and the expressions for
P, F j , and T jk obtained in Secs. 12.2.3 and 12.2.4 have a wide domain of validity.

In this section we impose a slow-motion condition and calculate the gravitational-wave
fluxes for situations in which the gravitational-wave field can be expressed as a post-
Newtonian expansion. We shall derive ready-to-use expressions for P, F j , and T jk that
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involve multipole moments of the mass and current distribution, and recover the famous
quadrupole formula for the rate at which gravitational waves carry energy away from their
source. As an application of this slow-motion formalism, we shall examine the radiative
losses suffered by a two-body system in bound orbital motion.

12.3.1 Leading-order multipole radiation

The gravitational potentials that result from a post-Minkowskian approximation of the field
equations were calculated in Chapter 7, and expressions appropriate for the far-away wave
zone were listed in Box 7.7. According to these expressions, the potentials are expressed
as a multipole expansion,

h jk = 2G

c4 R

[
Ï jk + 1

3c

(...
I jkn + 2εmnj J̈ mk + 2εmnkJ̈ mj

)
Nn + O(c−2)

]
, (12.60)

automatically incorporating a post-Newtonian expansion in powers of vc/c � 1, with vc

denoting a characteristic velocity of the matter distribution. At the leading post-Newtonian
order, the formal moments I jk , I jkn , and J mj can be replaced by their Newtonian ex-
pressions defined in terms of the conserved density ρ∗; we have the mass quadrupole
moment

I jk(τ ) :=
∫

ρ∗x j xk d3x , (12.61)

the mass octupole moment

I jkn(τ ) :=
∫

ρ∗x j xk xn d3x , (12.62)

and the current quadrupole moment

J jk(τ ) := ε jab

∫
ρ∗xavbxk d3x . (12.63)

In these equations, the mass density ρ∗ and the velocity field v are given as functions
of retarded time τ := t − R/c and the spatial coordinates x. In Eq. (12.60) the term
involving the mass quadrupole moment is the leading-order, Newtonian contribution to the
gravitational-wave field, while the remaining terms are 0.5pn corrections that are smaller
by a factor of order vc/c � 1. Our expression for h jk neglects corrections of order (vc/c)2

and higher.
To properly represent the gravitational-wave field, the potentials of Eq. (12.60) must

be subjected to the transverse-tracefree projection introduced in Sec. 11.1.7. According to
Eqs. (11.31) and (11.34), we have that

h jk
TT = (tt) jk

pq h pq , (12.64)

where

(tt) jk
pq := P j

p Pk
q − 1

2
P jk Ppq , P j

k := δ
j
k − N j Nk . (12.65)



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-12 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 12:29

643 12.3 Radiative losses in slowly-moving systems

To facilitate this projection it is helpful to decompose the multipole moments into their
irreducible components, according to

I jk = I 〈 jk〉 + 1

3
δ jk I pp, (12.66a)

I jkn = I 〈 jkn〉 + 1

5

(
δ jk I npp + δ jn I kpp + δkn I jpp

)
, (12.66b)

J jk = J 〈 jk〉 + J [ jk] , (12.66c)

in which the angular brackets indicate the symmetric-tracefree operation first introduced in
Sec. 1.5.3, and the square brackets indicate antisymmetrization.

In terms of the irreducible moments we have that the gravitational potentials of Eq. (12.60)
can be expressed as

h jk tt= 2G

c4 R

[
Ï 〈 jk〉 + 1

3c

(...
I

〈 jkn〉 + 2εmnj J̈ 〈mk〉 + 2εmnk J̈ 〈mj〉
)

Nn + O(c−2)

]
, (12.67)

where the equality sign
tt=, first introduced near the end of Sec. 11.3.1, indicates that terms

proportional to δ jk , N j , or N k have been discarded; these will not survive the TT projection
of Eq. (12.64). Note that the gravitational-wave field involves only the STF pieces of the
radiative multipole moments.

12.3.2 Leading-order fluxes

It is straightforward to insert Eq. (12.67) within the flux formulae of Eqs. (12.42), (12.43),
and (12.47), evaluate the angular integrals, and arrive at

P = G

5c5

...
I

〈pq〉 ...
I

〈pq〉
, (12.68a)

F j = G

c7

(
2

63

(4)

I 〈 j pq〉 ...I
〈pq〉 − 16

45
ε j

pq

...
J

〈pr〉 ...
I

〈qr〉
)

, (12.68b)

T jk = 2G

5c5

(
Ï 〈 j p〉 ...I

〈kp〉 − Ï 〈kp〉 ...I
〈 j p〉)

. (12.68c)

We shall sketch the steps leading to these results in a moment, but we first observe that
our result for P is the famous quadrupole formula which relates the energy radiated in
gravitational waves to the quadrupole-moment tensor of the matter distribution. (Refer to
Box 11.2 for a discussion of the historical controversy that has surrounded this formula.)
This scales as G/c5, and additional contributions from higher-order multipole moments
would appear at order G/c7 and higher. Our result for F j involves a coupling between
the mass quadrupole and octupole moments, as well as one between the mass and current
quadrupole moments; we see that F j scales as G/c7 instead of G/c5. Our result for the
angular-momentum flux can also be expressed in terms of the torque vectorT j := 1

2ε
j
pqT

pq ,

T j = 2G

5c5
ε j

pq Ï 〈pr〉 ...I
〈qr〉; (12.69)

this involves the mass quadrupole moment only, and here also contributions from higher-
order moments would appear at order G/c7 and higher.
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To obtain Eq. (12.68a) for P we truncate Eq. (12.67) to its leading-order term, carry out
the TT projection of Eq. (12.64), and insert the result within Eq. (12.42). After simplification
we obtain

P = G

2c5

(
δprδqs − 2δpr

〈〈
Nq Ns

〉〉+ 1

2

〈〈
Np Nq Nr Ns

〉〉)
f pq f rs, (12.70)

with f jk := ...
I

〈 jk〉 and 〈〈 · · · 〉〉 := (4π )−1
∫

(· · · ) d� indicating an angular average. These
are easily evaluated with the help of the identities

〈〈
N j Nk

〉〉 = 1

3
δ jk, (12.71a)

〈〈
N j Nk Np Nq

〉〉 = 1

15

(
δ jkδpq + δ j pδkq + δ jqδkp

)
, (12.71b)

〈〈
N j Nk Np Nq Nr Ns

〉〉 = 1

105

(
δ jkδpqδrs + distinct permutations

)
, (12.71c)

which were established back in Sec. 1.5.3. Making use of the STF properties of f jk , we
arrive at Eq. (12.68a).

To obtain Eq. (12.68b) from Eq. (12.43) we must include the subleading terms in
Eq. (12.67), because a leading-order calculation involves angular integrations of odd prod-
ucts of the radial vector N , which all vanish. After the TT projection we obtain

F j = G

3c7

(
δprδqs

〈〈
N j Nn

〉〉− 2δpr

〈〈
N j Nq Ns Nn

〉〉+ 1

2

〈〈
N j Np Nq Nr Ns Nn

〉〉)
f pq f rsn,

(12.72)

with f jk := ...
I

〈 jk〉 and f jkn := ....
I

〈 jkn〉 + 2εmnj
...
J

〈mk〉 + 2εmnk
...
J

〈mj〉. After evaluation of the
angular integrals and simplification (taking advantage of the STF properties of f jk and
f jkn), we obtain

F j = G

3c7

(
22

105
f pq f pq j − 4

35
f pq f jpq

)
, (12.73)

which leads directly to Eq. (12.68b).
The computations that lead to Eq. (12.68c) from Eq. (12.47) are similar. Here also we

truncate Eq. (12.67) to its leading-order term, and the gravitational-wave field must be
differentiated only after the TT projection has been accomplished. (This step is facilitated
by invoking the identity R∂ j Ppq = −Pjp Nq − Pjq Np.) The remaining manipulations are
straightforward, and we arrive at Eq. (12.68c).

12.3.3 Application: Newtonian binary system

As an application of the formalism developed in this section, we calculate the gravitational-
wave fluxes P, F j , and T jk for a binary system consisting of a body of mass m1 at position
r1(t) and a body of mass m2 at position r2(t); the positions are given in relation to the
system’s barycenter, chosen to be at the origin of the spatial coordinates. We describe
the mutual gravitational attraction at the leading-order, Newtonian level, and we employ
the formulae listed in Eqs. (12.68) and (12.69) to calculate the fluxes. The Keplerian
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orbital motion was first examined back in Sec. 3.2, and considered again in the context
of gravitational-wave emissions in Sec. 11.2.2; the required equations can be found at the
beginning of Sec. 11.2.2. The main orbital parameters are the semilatus rectum p and the
eccentricity e. The orbital period is

P = 2π

√
a3

Gm
, (12.74)

where a := p/(1 − e2) is the semi-major axis and m := m1 + m2. The orbital energy and
angular momentum are

E = −ηGm2

2a
, L = ηmh ez, (12.75)

where η := m1m2/m2, h := |r × v| = √
Gmp with r := r1 − r2 and v := v1 − v2, and

ez := [0, 0, 1] is a unit vector normal to the orbital plane. It is useful to note that the equations
of motion imply that vv̇ = −Gmṙ/r2 and rr̈ = (r φ̇)2 − Gm/r , in which r := |r|, v := |v|,
φ̇ = h/r2, and an overdot indicates differentiation with respect to time.

The multipole moments that appear in the flux formulae are

I jk = ηm r jrk, (12.76a)

I jkn = −�ηm r jrkrn, (12.76b)

J jk = −�ηmh e j
z r k , (12.76c)

where � := (m1 − m2)/m. These expressions follow directly from the definitions of
Eqs. (12.61), (12.62), and (12.63) when the mass density is given by ρ∗ = m1δ(x − r1) +
m2δ(x − r2) and the individual positions are expressed in terms of the separation r . The
result for J jk takes into account the fact that hez = r × v.

Differentiation of the multipole moments and involvement of the Keplerian equations
yields

Ï jk = 2ηm

(
v jvk − Gm

r3
r jr k

)

= 2ηm
[
(ṙ2 − Gm/r )n j nk + ṙ (r φ̇)

(
n jλk + λ j nk

)+ (r φ̇)2λ jλk
]

= 2ηm
Gm

p

[
−(1 + e cos φ − e2 sin2 φ)n j nk

+ e sin φ (1 + e cos φ)
(
n jλk + λ j nk

)+ (1 + e cos φ)2λ jλk
]
, (12.77a)

...
I

jk = −2ηm
Gm

r2

[
2

r

(
r jvk + v j r k

)− 3ṙ

r2
r jr k

]

= −2ηm
Gm

r2

[
ṙ n j nk + 2(r φ̇)

(
n jλk + λ j nk

)]

= −2ηm
(Gm)3/2

p5/2
(1 + e cos φ)2

[
e sin φ n j nk + 2(1 + e cos φ)

(
n jλk + λ j nk

)]
,

(12.77b)

(continued overleaf)
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(4)

I jkn = �ηm
Gm

r2

[
20

r

(
v jvkrn + v j r kvn + r jvkvn

)
− 30ṙ

r2

(
v j r krn + r jvkrn + r jr kvn

)− 3

r3
(3v2 − 15ṙ2 + 4Gm/r )r jr krn

]

= �ηm
Gm

r2

{
3
[
2ṙ2 − 3(r φ̇)2 − 4Gm/r

]
n j nknn

+ 10ṙ (r φ̇)
(
n j nkλn + n jλknn + λ j nknn

)
+ 20(r φ̇)2

(
n jλkλn + λ j nkλn + λ jλknn

)}

= �ηm
(Gm)2

p3
(1 + e cos φ)2

[
−3(7 + 10e cos φ + 5e2 cos2 φ − 2e2)n j nknn

+ 10e sin φ (1 + e cos φ)
(
n j nkλn + n jλknn + λ j nknn

)
+ 20(1 + e cos φ)2

(
n jλkλn + λ j nkλn + λ jλknn

)]
,

(12.77c)

...
J

jk = �ηmh
Gm

r3
e j

z

(
vk − 3ṙ

r
r k

)

= −�ηmh
Gm

r3
e j

z

[
2ṙ nk − (r φ̇)λk

]
= −�ηm

(Gm)2

p3
(1 + e cos φ)3e j

z

[
2e sin φ nk − (1 + e cos φ)λk

]
, (12.77d)

where n = [cos φ, sin φ, 0] and λ = [− sin φ, cos φ, 0] are basis vectors in the orbital plane.
After symmetrizing

...
J

jk , making all the moments tracefree, and inserting the results within
the flux formulae of Eqs. (12.68) and (12.69), we obtain

P = 32

5
η2 c5

G

(
Gm

c2 p

)5

(1 + e cos φ)4

[
1 + 2e cos φ + 1

12
e2(1 + 11 cos2 φ)

]
, (12.78a)

Fx = 464

105
�η2 c4

G

(
Gm

c2 p

)11/2

sin φ (1 + e cos φ)4

×
[

1 + 175

58
e cos φ + 2

29
e2(3 + 40 cos2 φ) + 5

58
e3 cos φ (2 + 9 cos2 φ)

]
,

(12.78b)

Fy = −464

105
�η2 c4

G

(
Gm

c2 p

)11/2

(1 + e cos φ)4

[
cos φ − 1

58
e(9 − 175 cos2 φ)

− 1

29
e2 cos φ (1 − 80 cos2 φ) + 1

58
e3(2 + 3 cos2 φ + 45 cos4 φ)

]
, (12.78c)

Txy = 32

5
η2mc2

(
Gm

c2 p

)7/2

(1 + e cos φ)3

[
1 + 3

2
e cos φ − 1

4
e2(1 − 3 cos2 φ)

]
,

(12.78d)
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τ/P
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P

Fig. 12.1 The energy fluxP, in units of (32/5)η2(c5/G)(Gm/c2p)5, as a function of retarded time τ , in units of the orbital
period P. The relation between τ and the orbital phaseφ is obtained by numerical integration of the Newtonian
equations of motion. The orbital eccentricity is set equal to e = 0.7, and the gravitational-wave polarizations
corresponding to this orbital configuration are displayed in Fig. 11.2. We see that most of the energy is emitted when
the orbit is near pericenter, where the motion is fastest.

while Fz = 0 and Tyz = Tzx = 0. Plots of P, Fx , and Fy as functions of time are presented
in Figs. 12.1 and 12.2; a plot of Txy would look very similar to P.

When the orbit is circular (so that e = 0) the fluxes simplify to

P = 32

5
η2 c5

G
(v/c)10, (12.79a)

Fx = 464

105
�η2 c4

G
(v/c)11 sin φ, (12.79b)

Fy = −464

105
�η2 c4

G
(v/c)11 cos φ, (12.79c)

Txy = 32

5
η2mc2(v/c)7, (12.79d)

where v := √
Gm/p is the orbital velocity. In this case the orbital phase is given by

φ = �τ , with � :=
√

Gm/p3 denoting the orbital angular velocity. We note that in this
case of circular motion, the energy and angular-momentum fluxes are related byP = �Txy .
We also see that the momentum flux is aligned with v when m1 < m2 (so that � < 0), and
that it is anti-aligned when m1 > m2; the momentum flux is therefore always in the direction
of motion of the lighter body.
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τ/P

40
x direction
y direction

30

20

10

0

−10

−20
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Fig. 12.2 The momentum fluxesFx andF y, in units of−�η2(c4/G)(Gm/c2p)11/2, as functions of retarded time τ , in units of
the orbital period P. A minus sign is inserted in the unit of momentum flux to reflect the fact that� < 0 when
m1 < m2. As in Fig. 12.1 the orbital eccentricity is set equal to e = 0.7. We see that most of the momentum is
emitted when the orbit is near pericenter. The emission in the x-direction cancels out over a complete orbital cycle, but
the emission in the y-direction builds up coherently.

Box 12.2 Momentum flux and gravitational-wave beaming

Our friend Alan Wiseman has proposed a useful electromagnetic analogy to understand why the momentum
flux is always in the direction of motion of the lighter body. Because the lighter body has a higher velocity,
the energy flux associated with its motion is beamed in the forward direction, just as the electromagnetic
radiation from a rapidly moving body is beamed by relativistic effects. Since energy carries momentum, there
is a preferential emission of momentum in the direction of motion of the lighter body. This is admittedly an
imperfect analogy, because the energy flux is predominantly quadrupolar, not dipolar, and thus it cannot have
a unique direction associated with it. On the other hand, the momentum flux arises from an interference be-
tween the quadrupolemoment I jk and the0.5pn corrections in Eq. (12.67), which depend on the octupole
and current quadrupole moments; although the latter are not vectors, they have an odd parity, and they can
therefore single out a preferred direction. Scaling the energy flux bymc2, the momentum flux bymc, and
taking the ratio gives (F j/mc)/(P/mc2) ∼ v/c, precisely the kind of v/c effect that gives rise to
relativistic beaming.

Returning to non-circular orbits, it is instructive to average the fluxes over a complete
orbital cycle. We define the orbital average of a quantity f by

〈 f 〉 := 1

P

∫ P

0
f (t) dt, (12.80)
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where P is the orbital period of Eq. (12.74). This can also be expressed as

〈 f 〉 = (1 − e2)3/2 1

2π

∫ 2π

0
(1 + e cos φ)−2 f (φ) dφ (12.81)

by switching integration variables from t to φ with the help of the Keplerian equations of
motion. Substitution of Eqs. (12.78) into Eq. (12.81) yields

〈P〉 = 32

5
η2 c5

G

(
Gm

c2 p

)5

(1 − e2)3/2

(
1 + 73

24
e2 + 37

96
e4

)
, (12.82a)

〈Fx 〉 = 0, (12.82b)

〈Fy〉 = −52

5
�η2 c4

G

(
Gm

c2 p

)11/2

e(1 − e2)3/2

(
1 + 19

13
e2 + 37

312
e4

)
, (12.82c)

〈Txy〉 = 32

5
η2mc2

(
Gm

c2 p

)7/2

(1 − e2)3/2

(
1 + 7

8
e2

)
. (12.82d)

That 〈Fx 〉 = 0 and 〈Fy〉 �= 0 reflects the fact that while the orbital motion is reflection-
symmetric across the x-axis, it is asymmetrical with respect to the y-axis: the motion
is faster when the orbit crosses the x-axis is at pericenter, and slower when it crosses
it at apocenter, moving in the opposite direction. Most of the gravitational waves are
emitted near pericenter, where the motion is fastest, and most of the momentum flux is
therefore generated near φ = 0. When � < 0, that is, when m1 < m2, we have that Fy > 0
at pericenter, and the averaged flux also is positive; this is the situation represented in
Fig. 12.2. On the other hand, when � > 0 and m1 > m2, we have that Fy < 0 at pericenter,
and the averaged flux also is negative. The momentum flux vanishes when the masses are
equal, and the averaged flux vanishes when e = 0.

Bodies in unbound orbits, with e ≥ 1, also radiate energy, momentum, and angular
momentum. In this case there is no orbital period and no useful notion of averaged fluxes,
but one can calculate the total energy, momentum, and angular momentum radiated during
the encounter. These losses raise the interesting possibility of a “gravitational-wave capture,”
whereby two bodies in an unbound orbit lose enough energy to end up in a bound orbit.
This possibility is explored in Exercise 12.8.

It is tempting to exploit the balance equations in averaged form,

d E

dt
= −〈P〉, d L

dt
= −〈Txy〉, (12.83)

to infer the rates at which the orbital elements a, p, and e must change in order to
reflect the loss of energy and angular momentum to gravitational waves. This crude and
tentative analysis is refined in Sec. 12.9, where we calculate how the orbital elements change
instantaneously as a result of the action of the gravitational radiation-reaction force.

The rate of change of a is obtained by inserting Eq. (12.75) into the first balance equation.
With Eq. (12.82) we obtain

da

dt
= −64

5
ηc

(
Gm

c2a

)3 1 + 73
24 e2 + 37

96 e4

(1 − e2)7/2
. (12.84)
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Kepler’s third law, P ∝ a3/2, allows us to compute how the orbital period changes as a
result of the orbital evolution; we find that it decreases according to

d P

dt
= −192π

5

(
GM

c3

2π

P

)5/3 1 + 73
24 e2 + 37

96 e4

(1 − e2)7/2
, (12.85)

where M := η3/5m is the chirp mass, as defined in Eq. (11.80). The rate of change of p is
obtained by inserting Eq. (12.75) into the second balance equation. Here we obtain

dp

dt
= −64

5
ηc

(
Gm

c2 p

)3

(1 − e2)3/2

(
1 + 7

8
e2

)
. (12.86)

The rate of change of e can then be inferred from the relation p/a = 1 − e2; we get

de

dt
= −304

15
ηc

e

a

(
Gm

c2a

)3 1 + 121
304 e2

(1 − e2)5/2
(12.87a)

= −304

15
ηc

e

p

(
Gm

c2 p

)3

(1 − e2)3/2

(
1 + 121

304
e2

)
. (12.87b)

We see that radiative losses tend to decrease both the size of the orbit and its eccentricity; in
the course of time the orbit shrinks and becomes increasingly circular. The orbital evolution
proceeds on a radiation-reaction time scale of the order of

Trr = 1

η

(
Gm

c2a

)−5/2 P

2π
; (12.88)

this is longer than the orbital period by a factor of order (vc/c)−5 � 1, where vc ∼ √
Gm/a

is the characteristic orbital velocity.
The evolution equations for a, p, and e can be integrated to give

a = a0(e/e0)12/19

(
1 − e2

0

1 − e2

)(
1 + 121

304 e2

1 + 121
304 e2

0

)870/2299

(12.89)

and

p = p0(e/e0)12/19

(
1 + 121

304 e2

1 + 121
304 e2

0

)870/2299

, (12.90)

which express a and p as functions of the eccentricity; here a0 and p0 are respectively the
values of a and p when e = e0. When the eccentricity is always small, so that both e and
e0 are much smaller than unity, these results can be approximated as a � a0(e/e0)12/19 or
e � e0(a/a0)19/12; in this approximation p � a.

12.4 Astrophysical implications of radiative losses

12.4.1 Binary pulsars

For many years, any discussion of losses due to gravitational-wave emissions, such as the
one presented in the previous section, was purely academic, because the effects are so
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Table 12.1 Orbital parameters of binary pulsars. The parameter a1 sin ι is the projection of the pulsar’s
semimajor axis along the line of sight. The parameter ω̇ is defined by Eq. (10.17). The parameter γ ′ is the
coefficient [(M1 + 2M2)/m](a3/Gm)1/2(GM2/c2a)e that appears in front of sin u in Eq. (10.135). The

period derivative Ṗ is given by Eq. (12.85). The parameter r is the coefficient GM2/c2 that appears in front of
the logarithmic term in Eq. (10.139), and s = sin ι appears within the logarithm. The numbers in

parentheses indicate the error in the last digit.

Parameter PSR 1913+16 J0737-3039A

Keplerian parameters
a1 sin ι/c (s) 2.341782(3) 1.415032(1)
Eccentricity, e 0.6171334(5) 0.0877775(9)
Orbital period, P (day) 0.322997448911(4) 0.10225156248(5)

Relativistic parameters
Pericenter advance, ω̇ (◦ yr−1) 4.226598(5) 16.8995(7)
Redshift/time dilation, γ ′ (ms) 4.2992(8) 0.386(3)
Period derivative, Ṗ (10−12) −2.423(1) −1.25(2)
Shapiro delay, r (μs) 6.2(3)
Shapiro delay, s 0.9997(4)

extremely small. The effects of radiative losses on the Earth–Sun or Earth–Moon orbits,
for example, are utterly undetectable, as you will discover in Exercise 12.4. The complete
absence of experimental evidence bearing on radiative losses was a key ingredient in
the persistence of the quadrupole-formula controversy, as reviewed in Box 11.2. All this
changed in the fall of 1974.

During the summer of 1974, radio astronomer Joseph H. Taylor and his graduate student
Russell Hulse were conducting a systematic search for new pulsars using the Arecibo radio
telescope in Puerto Rico. Pulsars are rotating neutron stars that emit a beam of radio waves
detectable as a pulse every time the beam crosses a radio receiver. Since the discovery
of the first pulsar in 1967, almost 100 had been found by 1974 (nearly 2000 are known
today). But this new pulsar, labeled PSR 1913+16 according to its position on the sky,
was different from all the others because its pulse period, nominally about 59 milliseconds,
varied by plus or minus 40 microseconds on a roughly eight-hour period. Hulse and Taylor
quickly concluded that the variation was a result of the Doppler shift of the period caused
by the pulsar’s orbit about an unseen companion. By December they had measured the key
orbital elements, the orbital period, the eccentricity, the semi-major axis projected along
the line of sight, as well as the relativistic pericenter advance (the current values are listed
in Table 12.1).

It was already clear from the first discovery announcement in late September that the
binary pulsar would provide an opportunity to test the quadrupole formula. Inserting
the measured period P and eccentricity e into Eq. (12.85), and scaling the chirp mass by the
solar mass, we find that the orbital period should decrease at a rate of 53.2 (M/M�)5/3

microseconds per year. Out of an orbital period of almost eight hours, this is a daunt-
ingly small effect, but one that could nevertheless be measured. This required a change
of data-analysis strategy, from measuring pulse periods to measuring pulse arrival times
(as described in Sec. 10.3.6), and improvements of the instrumentation at the Arecibo
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telescope, to better handle the effects of interstellar dispersion on the radio signals. After
collecting data for a few short years, Taylor and colleagues were able to report the first
measurement of the period decrease in December 1979.

The measurement of d P/dt can only be compared with the relativistic prediction when
the chirp mass M is known. Fortunately, the measured pericenter advance of 4.2 de-
grees per year gives the total mass – refer to Eq. (10.17) – and the arrival-time anal-
ysis also yields the combination of masses (M1 + 2M2)M2 via the periodic term in
Eq. (10.135). These data produced precise values for the pulsar and companion masses,
(1.4398 ± 0.0002)M� and (1.3886 ± 0.0002)M� respectively, and thus a precise pre-
diction of d P/dt = −(2.402531 ± 0.000014) × 10−12, in beautiful agreement with the
measurement.

While the value of d P/dt reported by Taylor in 1979 had measurement errors of
10 percent, the errors have steadily decreased over time, and they are now at the level
of about 0.05 percent. At this level of precision it is necessary to take into account the
relative acceleration between the binary pulsar and the solar system caused by the differ-
ential rotation of the galaxy. This causes all observed periods in the binary-pulsar system
to vary slowly with time. The best estimates of the galactic effect yield a small correc-
tion (d P/dt)gal = −(0.027 ± 0.005) × 10−12, so that the agreement between the observed
radiative loss and the prediction of the quadrupole formula can be expressed as

(d P/dt)obs

(d P/dt)GR
= 0.997 ± 0.002 . (12.91)

This has been widely hailed as definitive, albeit indirect, evidence for the existence of
gravitational radiation, and Taylor and Hulse were rewarded for this discovery with the
1993 Nobel Prize in Physics.

Interestingly, while continued observation of the system will provide more precise mea-
surements of d P/dt (the statistical errors on such drifting parameters tend to decrease as
T −3/2, where T is the observation time), they will not produce an improved test of the
quadrupole formula. This is because the measurement of d P/dt is now limited by our poor
understanding of the galaxy’s differential rotation, and the uncertainties associated with it
are unlikely to ever be reduced. In fact, the tables can be turned: the assumed validity of
the quadrupole formula combined with the observed d P/dt provides a better measure of
the relative acceleration than is likely to be obtained by standard astronomical techniques.

Many other binary pulsars have been found since Hulse and Taylor’s discovery, almost 100
to date and counting. One of the most remarkable is the “double pulsar” J0737-3039A&B,
discovered in 2003. Whereas a single active pulsar was detected in the Hulse–Taylor
system (the companion is believed to be a very old, essentially “dead” pulsar), here both
objects, denoted A and B, were detected as pulsars. The orbit is very relativistic, with
an orbital period of only a tenth of a day, and a pericenter advance of almost 17 degrees
per year (see Table 12.1). The orbit is observed almost edge on, so that in addition to the
three relativistic effects measured in the Hulse–Taylor binary pulsar (pericenter advance,
redshift-time dilation effect, and period decrease), it is also possible to measure the Shapiro
time delay of the signal from the stronger pulsar as it passes by the companion once per
orbit. This delivers a precise determination of the masses – MA = (1.3381 ± 0.0007)M�



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-12 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 12:29

653 12.4 Astrophysical implications of radiative losses

and MB = (1.2489 ± 0.0007)M� – and the period derivative has already been measured to
two-percent accuracy. Ultimately this system will yield a more precise test of the quadrupole
formula than did PSR 1913+16, partly because the main pulsar has a narrower pulse profile,
leading to a more precise timing of the pulse arrivals, but mainly because the system is
closer to the Earth and in a favorable location within the galaxy, so that the galactic
acceleration is essentially negligible (the acceleration is predominantly transverse to the
line of sight). Another remarkable feature of the double pulsar is that it is no longer double:
since its discovery the spin axis of the secondary pulsar has shifted in direction, thanks to
the relativistic geodetic precession reviewed in Sec. 10.4.3, and as a consequence the pulsar
beam is no longer intersecting the Earth. This is another example of a post-Newtonian
effect with practical consequences, at least for the radio astronomers who keep observing
the double pulsar.

12.4.2 Inspiralling compact binaries

In due course, radiative losses bring the two neutron stars of a binary-pulsar system into
such close proximity that their orbital periods are measured in fractions of a second rather
than hours. At this stage the gravitational waves emitted by the binary system enter the
frequency band of a ground-based laser interferometric detector such as LIGO and Virgo,
namely the band which lies between approximately 10 Hz and 1000 Hz. It is totally pointless
to wait around for this to happen, however, because the required time is extremely long.
In the limit of small eccentricities, it is straightforward to estimate the inspiral time by
integrating Eq. (12.84) from a’s present value to a final value of effectively zero. The
present value and the total mass m can be conveniently expressed in terms of the orbital
period P and the observed rate of pericenter advance ω̇. For the special case of almost
equal masses (η = 1/4), this calculation yields

T = 5

128

(
6π

ω̇

)5/2 ( 1

P

)3/2

≈ 1.9 × 108

(
5o/yr

ω̇

)5/2 (1 day

P

)3/2

yr , (12.92)

and we see that for a typical binary pulsar, the inspiral time is of the order of 200 million
years. A more eccentric orbit starting with the same a would give rise to a shorter time
scale, because of the excess radiative loss induced by the rapidly changing velocities near
pericenter (refer to Fig. 12.1).

The important point about this time scale, long as it may seem, is that it is still short
compared to the age of typical galaxies like the Milky Way. There is therefore a chance that a
binary pulsar born 200 million years ago in a nearby galaxy would be in its final death spiral
today, emitting a detectable burst of gravitational waves. Such systems, called “inspiralling
compact binaries” (they could also involve black holes), are a highly anticipated source of
gravitational waves for detection by the LIGO–Virgo class of interferometers. Based on the
small number of relativistic binary pulsars that have been observed to date, it is possible to
estimate that one such inspiral could occur once every million years (give or take an order or
magnitude) in a galaxy like ours. With detectors capable of measuring gravitational waves
in a volume that contains millions of galaxies, as will be the case with advanced versions
of the LIGO and Virgo instruments, the number of detectable events becomes interesting.
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Another important feature of radiative losses is the circularization of orbits. When the
gravitational waves from an inspiralling compact binary enter the frequency band of the
LIGO and Virgo instruments, the system’s semi-major axis a is of the order of 1000 km or
less, and is therefore much smaller than its initial value a0. Equation (12.89) then implies
that the orbital eccentricity will be vanishingly small, irrespective of its initial value. This
circumstance greatly simplifies the nature of the expected gravitational-wave signal, and
reduces the challenge of devising data-analysis strategies to measure the waves.

Because the interferometers are broad-band detectors, they effectively detect the grav-
itational wavetrain cycle by cycle, measuring not only the varying strength within each
cycle, but also the varying frequency as the inspiral proceeds. Studies of optimal detection
strategies have shown that these measurements, particularly of the varying wave frequency
or phase, can be very accurate, depending of course on the strength of the signal compared
to instrumental noise. To exploit these optimal strategies, one must be able to predict the
evolution of the phase to high accuracy, and this requires going beyond the quadrupole
formula by incorporating higher-order post-Newtonian corrections in calculations of the
gravitational-wave signal.

With this in mind, we now calculate the first post-Newtonian corrections to the fluxes
of energy, momentum, and angular momentum emitted by a binary system in circular
orbit, and infer the rate at which the orbital frequency changes with time. The gravitational
waves emitted by a post-Newtonian binary system in circular motion were calculated in
Sec. 11.4.6. There we introduced

β :=
(

Gm�

c3

)1/3

(12.93)

as a meaningful post-Newtonian expansion parameter, defined directly in terms of the
total mass m and orbital frequency �. The orbital velocity is then given by v/c = β[1 −
1
3 (3 − η)β2 + O(β4)], and the orbital radius is determined from Gm/(c2r ) = β2[1 + 1

3 (3 −
η)β2 + O(β4)]. The gravitational-wave polarizations are expressed as

h+,× = 2ηGm

c2 R
β2 H+,×, (12.94)

with H+,× expanded as

H+,× = H [0]
+,× + �βH [1/2]

+,× + β2 H [1]
+,× + �β3 H [3/2]

+,× + β3 H tail
+,× + O(β4), (12.95)

where � := (M1 − M2)/m is the dimensionless mass difference. Each contribution H [n]
+,×

is a function of the inclination angle ι and of the orbital phase � := �τ + ω, where ω is a
second orientation angle. Explicit expressions appear in Eqs. (11.296) and (11.297).

The most efficient way to compute P, F j , and T jk is to proceed via Eqs. (12.45),
(12.46), and (12.48), which express the fluxes directly in terms of the gravitational-wave
polarizations. To reflect the choice of transverse basis made here (and inherited from
Sec. 11.2.2), we make the identifications ϑ = ι and ϕ = π

2 − ω. Because the time depen-
dence of each polarization is contained in the orbital phase �, derivatives with respect to τ

can be evaluated as ∂τ = �∂� , and derivatives with respect to ϕ can similarly be expressed
as −∂� .
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Simple computations return

P = 32

5
η2 c5

G
β10

[
1 −

(1247

336
+ 35

12
η
)
β2 + 4π β3 + O(β4)

]
, (12.96a)

Fx = 464

105
�η2 c4

G
β11

[
1 −

(452

87
+ 1139

522
η
)
β2 + O(β3)

]
sin �τ, (12.96b)

Fy = −464

105
�η2 c4

G
β11

[
1 −

(452

87
+ 1139

522
η
)
β2 + O(β3)

]
cos �τ. (12.96c)

We also have that Fz = 0 = Tyz = Tzx , and Txy is related to P by P = �Txy . We see that
these expressions reduce to Eqs. (12.79) when β � 1.

We observe that P contains no correction term at order β, in spite of the fact that the
gravitational-wave polarizations do possess such terms; a 0.5pn correction to the energy
flux would have to come from an interaction between the H [0] and H [1/2] terms within H ,
but because these signals are out of phase, the interaction produces no flux. We observe
also that P contains a term at order β3, and such a term has three possible origins. First,
it might have originated from an interaction between H [0] and H [3/2], but this produces
no flux because these signals also are out of phase. Second, it might have originated from
an interaction between H [1] and H [1/2], but this does not contribute for the same reason.
The only remaining possibility is an interaction between H [0] and H tail; these signals are
in phase, and their interaction does indeed contribute to the energy flux. The 4πβ3 term
within Eq. (12.96a) has its origin in the tail effect; it is a wave-propagation correction to
the leading-order expression that appears outside the large square brackets.

Taking inspiration from Sec. 12.3.3, we insert the energy flux of Eq. (12.96) within
the energy-balance equation d E/dt = −P to determine the orbital evolution of a post-
Newtonian binary system. From Eqs. (10.9) and (10.11) we know that the orbital energy of
the two-body system is given by

E = −1

2
ηmc2β2

[
1 − 1

12
(9 + η)β2 + O(β4)

]
, (12.97)

and d E/dt is therefore related to dβ/dt , the rate of change of the velocity parameter of
Eq. (12.93). Solving for this yields

dβ

dt
= 32

5
η

c3

Gm
β9

[
1 −

(
743

336
+ 11

4
η

)
β2 + 4πβ3 + O(β4)

]
, (12.98)

and integration produces � as a function of time.
We have computed the orbital evolution of a circular binary system through 1.5pn order

beyond the leading order, quadrupole-formula expression. This degree of accuracy is not
sufficient for the purpose of measuring gravitational waves with the advanced LIGO and
Virgo detectors. For this it is proving necessary to calculate the energy flux and the resulting
expression for dβ/dt through 3.5pn order beyond the quadrupole formula.
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12.4.3 “How black holes get their kicks”

[The title of this section is borrowed from a seminal paper on black-hole recoils by Marc
Favata, Scott Hughes, and Daniel Holz (2004). It inspired others to title their papers with
equally bad puns. Among the notable cases we find Getting a kick out of numerical relativity
by Baker et al. (2006), and Total recoil by Gonzalez et al. (2007).]

Another radiative loss with potentially important astrophysical consequences is the
radiation of linear momentum and the resulting recoil of the system. This is particularly
important for binary inspirals. Because momentum is radiated in the direction of motion of
the lighter body, the center-of-mass of the system must recoil in the opposite direction. But
this direction is continually changing as the bodies move on their orbits, and the center-of-
mass spirals outward from its initial position, with a growing radius and an ever increasing
speed as the radiation gains in intensity. Finally, after the bodies have merged and settled
down to a stationary state (frequently a rotating black hole), the center-of-mass moves off
with whatever velocity it had when the radiation terminated.

This so-called “kick velocity” can easily be estimated for an inspiralling circular orbit.
We appeal to Eqs. (12.79b) and (12.79c), which inform us that the center-of-mass must
recoil according to

d P

dt
= −F = 464

105
�η2 c4

G
(v/c)11λ , (12.99)

where λ = [−sin φ, cos φ, 0] is tangent to the orbit. As we observed back in Eqs. (12.82b)
and (12.82c), the averaged momentum flux vanishes when the orbital speed and frequency
are constant. During an inspiral, however, the speed and frequency increase with time
(over a very long radiation-reaction time scale), and the long-term average does not vanish.
Integrating Eq. (12.99) from t = −∞ to the present time using an adiabatic approximation,
we find that the final kick velocity is given by (see Exercise 12.7)

V kick = 464

105
�η2

(
Gm

c2a

)4

c n , (12.100)

modulo corrections of higher post-Newtonian order. Note that for a given final orbital
velocity v ∼ √

Gm/a, the kick velocity is independent of the total mass of the system. It is
directed along n = [cos φ, sin φ, 0], toward the more massive body. It vanishes in the limit
of equal masses (� = 0) by symmetry.

For a final separation of a = 10Gm/c2, the recoil speed is equal to 133�η2 km/s.
Because Eq. (12.100) is valid only for Gm/c2a � 1, it cannot be trusted for smaller sepa-
rations, but it should continue to give a reliable order-of-magnitude estimate of the recoil.
Numerical simulations of the final inspiral of two non-rotating black holes have produced
maximum kick velocities of around 175 km/s, for the mass ratio that maximizes the co-
efficient �η2. Such velocities are probably too small to be of astrophysical importance.
When the black holes are spinning rapidly, however, with spin axes misaligned relative
to each other and to the orbital angular momentum, the simulations have shown that the
combination of momentum flux and strong precessions of the orbital plane can result
in “superkicks” as high as several thousand kilometers per second. Such velocities are
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astrophysically relevant for supermassive black-hole binaries, leading possibly to the ejec-
tion of the final black hole from the galaxy that hosted the inspiralling progenitor, or at
least to a significant displacement of the final hole from the central core of the galaxy.
There is now preliminary evidence for situations in which an accreting massive black hole
is apparently displaced and moving away from the center of its host galaxy, with a velocity
characteristic of a superkick.

12.5 Radiation-reaction potentials

In this section and the following ones we return to the near zone and work on obtaining
expressions for the radiation-reaction force acting within a matter distribution. The anal-
ogous situation in electromagnetism was examined in Sec. 12.1.4, where we explained
that the radiation-reaction force arises from terms in the potentials that come with an odd
power of the expansion parameter c−1. In electromagnetism the leading-order term in the
radiation-reaction force scales as c−3, and represents a 1.5pc correction to the equations of
motion; the scaling reflects the fact that radiative losses are dominated by electric dipole
radiation. We recall that we were able to obtain the radiation-reaction force at 1.5pc order
without having to calculate conservative corrections to the equations of motion at 1pc order.

The situation is similar in gravitation. Here also the radiation-reaction force arises from
terms in the potentials that come with odd powers of c−1 in a post-Newtonian expansion. In
this case, however, we shall find that the force scales as c−5 to reflect the fact that radiative
losses are dominated by mass quadrupole radiation; the radiation-reaction force represents
a 2.5pn correction to the equations of motion. Conservative corrections at 1pn order were
obtained in Secs. 8.4 and 9.3, and we shall see that the computations at 2.5pn order are
insensitive to corrections at 2pn order; these are not required for our discussion, and they
will not be computed.

In this section we calculate the gravitational potentials that give rise to the radiation-
reaction force. Our final results are summarized in Box 12.3. In Sec. 12.6 we involve these
potentials in a calculation of the radiation-reaction force acting within a perfect fluid. In
Sec. 12.7 we specialize these results to a system of well-separated bodies. In Sec. 12.8
we examine alternative gauges that simplify the description of radiation reaction, and in
Sec. 12.9 we calculate the orbital evolution of a two-body system under radiation reaction.

12.5.1 Near-zone potentials

A large part of the work required to identify the potentials responsible for radiation reaction
has already been done back in Sec. 7.1.2. There we saw that the potentials are decomposed
as hαβ = hαβ

N + hαβ

W , into contributions from a near-zone domain N and a complementary
wave-zone domain W . The potentials hαβ

N were expanded in powers of c−1, up to and
including O(c−7) for h00

N , O(c−6) for h0 j
N , and O(c−5) for h jk

N ; judicious use was made of
the conservation equations ∂βταβ = 0 to convert some terms into surface integrals at the
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boundary of the near zone. In Eqs. (7.15) we obtained the expressions

h00
N = 4G

c2

{∫
M

c−2τ 00

|x − x′| d3x ′ + 1

2c2

∂2

∂t2

∫
M

c−2τ 00|x − x′| d3x ′

− 1

6c3

(3)

Ikk(t) + 1

24c4

∂4

∂t4

∫
M

c−2τ 00|x − x′|3 d3x ′

− 1

120c5

[
(4xk xl + 2r2δkl)

(5)

Ikl(t) − 4xk
(5)

Ikll(t) +
(5)

Ikkll(t)
]

+ O(c−6)

}
+ h00[∂M ] , (12.101a)

h0 j
N = 4G

c3

{∫
M

c−1τ 0 j

|x − x′| d3x ′ + 1

2c2

∂2

∂t2

∫
M

c−1τ 0 j |x − x′| d3x ′

+ 1

18c3

[
3xk

(4)

I jk(t) −
(4)

I jkk(t) + 2εmjk
(3)

J mk(t)
]

+ O(c−4)

}
+ h0 j [∂M ] , (12.101b)

h jk
N = 4G

c4

{∫
M

τ jk

|x − x′| d3x ′ − 1

2c

(3)

I jk(t) + 1

2c2

∂2

∂t2

∫
M

τ jk |x − x′| d3x ′

− 1

36c3

[
3r2

(5)

I jk(t) − 2xm
(5)

I jkm(t) − 8xn εmn( j
(4)

J m|k)(t) + 6
(3)

M jkmm(t)
]

+ O(c−4)

}
+ h jk[∂M ] . (12.101c)

In each Poisson integral the components of the effective energy-momentum pseudotensor
ταβ are expressed as functions of t and x′, and the integration is over the near-zone domain
M defined by r ′ := |x′| < R, where R is the arbitrary cutoff radius between the near and
wave zones. As we explained back in Sec. 6.3.3, we are interested in the R-independent
pieces of each integral.

The various multipole moments that appear in the potentials were defined by Eqs. (7.16);
for convenience we list them explicitly here:

Ikl(t) :=
∫

M
c−2τ 00(t, x)xk xl d3x , (12.102a)

I jkm(t) :=
∫

M
c−2τ 00(t, x)x j xk xl d3x , (12.102b)

Ikll(t) :=
∫

M
c−2τ 00(t, x)xkr2 d3x , (12.102c)

Ikkll(t) :=
∫

M
c−2τ 00(t, x)r4 d3x , (12.102d)

J mk(t) := εmab

∫
M

c−1τ 0b(t, x)xa xk d3x , (12.102e)

M jkmm :=
∫

M
τ jk(t, x)r2 d3x . (12.102f)
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We explained in Box 7.1 how the multipole moments end up appearing in the expansions
of hαβ

N in powers of c−1, and how these manipulations give rise to additional boundary
terms hαβ[∂M ]. All such boundary terms must be carefully examined, and we assert that
at all post-Newtonian orders to be considered in this section, the boundary terms contain
no R-independent pieces, and they can therefore be safely discarded. We shall not prove
this assertion here, but you may be comforted with the assurance that each boundary term
in Eq. (12.101) was examined by us and shown to make no R-independent contribution to
the potentials.

It was established back in Sec. 7.3.4 that hαβ

W first makes a contribution at 3pn order in
the near zone, and because our considerations in this section are limited to 2.5pn order,
this can be ignored. The complete near-zone potentials hαβ can therefore be identified with
those of Eqs. (12.101).

12.5.2 Odd terms in the potentials

The terms that come with an odd power of c−1 within the curly brackets in Eqs. (12.101)
will be the focus of our attention; it is these that are responsible for the radiation reaction.
We have to keep in mind that while some factors of c−1 appear explicitly in these equations,
some are contained implicitly in the source functions ταβ . To identify the explicit and
implicit odd terms, it is useful to introduce the notation

h00 := 4

c2
V, h0 j := 4

c3
V j , h jk := 4

c4
W jk, (12.103)

for the potentials, and the notation

τ 00 := �c2, τ 0 j := s j c τ jk := τ jk, (12.104)

for the source functions. We next express the post-Newtonian expansion of the potentials
as

V = V [0] + c−2V [2] + c−4V [4] + O(c−6) + c−3V [3] + c−5V [5] + O(c−7),
(12.105a)

V j = V j [0] + c−2V j [2] + O(c−4) + c−3V j [3] + O(c−5), (12.105b)

W jk = W jk[0] + c−2W jk[2] + O(c−4) + c−1W jk[1] + c−3W jk[3] + O(c−5),
(12.105c)

where we have separated the odd-order terms from the even-order terms, and we express
the post-Newtonian expansion of the source functions as

� = �[0] + c−2�[2] + c−4�[4] + O(c−6) + c−5�[5] + O(c−7), (12.106a)

s j = s j [0] + c−2s j [2] + O(c−4) + c−5s j [5] + O(c−7), (12.106b)

τ jk = τ jk[0] + c−2τ jk[2] + O(c−4) + c−5τ jk[5] + O(c−7). (12.106c)
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The expansions of Eqs. (12.105) are directly imported from Eqs. (12.101). The expansions
of Eqs. (12.106), however, incorporate an assumption that the odd terms in the source
functions begin at order c−5; this assumption will be justified below.

When we substitute Eqs. (12.106) into Eqs. (12.101) and read off the various odd
potentials from Eqs. (12.105), we find that

V [3] = −1

6
G

(3)

Ikk[0], (12.107a)

V [5] = G

∫
M

�[5]

|x − x′| d3x ′ − 1

6
G

(3)

Ikk[2]

− 1

120
G
{

(4xk xl + 2r2δkl)
(5)

Ikl[0] − 4xk
(5)

Ikll[0] +
(5)

Ikkll[0]
}
, (12.107b)

V j [3] = 1

18
G
{

3xk
(4)

I jk[0] −
(4)

I jkk[0] + 2εmjk
(3)

J mk[0]
}
, (12.107c)

W jk[3] = −1

2
G

(3)

I jk[0], (12.107d)

W jk[5] = −1

2
G

(3)

I jk[2] − 1

36
G
{

3r2
(5)

I jk[0] − 2xm
(5)

I jkm[0]

− 8xn εmn( j
(4)

J m|k)[0] + 6
(3)

M jkmm[0]
}
. (12.107e)

The bracket notation was extended to the multipole moments; for example I jk[0] is the
quadrupole moment constructed from �[0], the 0pn piece of the effective mass density.
We can now appreciate what was meant by implicit and explicit odd terms: Examining the
expression for V [5], we see that the terms involving the multipole moments were listed
explicitly in Eqs. (12.101), but that the Poisson integral involving �[5] was present only
implicitly; it has now become fully explicit, thanks to the expansions of Eqs. (12.106). For
future reference we note that

W [1] := δ jk W jk[1] = 3V [3] = −1

2
G

(3)

Ikk[0] (12.108)

is an immediate consequence of Eqs. (12.107).

12.5.3 Odd terms in the effective energy-momentum tensor

To proceed we must justify the assumption made in Eqs. (12.106), that the odd terms in �,
s j , and τ jk begin at order c−5, and we must obtain an expression for �[5]. We recall that
the effective energy-momentum pseudotensor is defined by Eq. (6.52); it is given by

ταβ = (−g)
(
T αβ + tαβ

LL + tαβ

H

)
, (12.109)

in terms of a material contribution T αβ , the Landau–Lifshitz pseudotensor tαβ

LL of Eq. (6.5),
and the harmonic pseudotensor tαβ

H of Eq. (6.53).
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We begin with an examination of the material contribution. As usual we take the matter
distribution to consist of a perfect fluid, and we adopt the set of variablesm := {ρ∗, p,�, v}
that was first introduced in Sec. 7.1.1. Here ρ∗ := √−gγρ is the conserved mass density,
p is the pressure, � is the specific internal energy, and v is the velocity field; we also
have that ρ is the fluid’s proper mass density, g is the metric determinant, and γ := u0/c
is determined by the normalization condition gαβuαuβ = −c2 for the spacetime velocity
field uα := γ (c, v). We recall that ρ∗ satisfies the continuity equation ∂tρ

∗ + ∂ j (ρ∗v j ) = 0,
which expresses conservation of rest mass, and that the fluid’s energy-momentum tensor is
given by

T αβ = (ρ + ε/c2 + p/c2)uαuβ + pgαβ, (12.110)

where ε = ρ� is the proper density of internal energy.
Because the metric enters explicitly in Eq. (12.110), the energy-momentum tensor pos-

sesses a dependence upon the gravitational potentials, and it therefore contains terms that
are odd in c−1. To find these we first calculate the metric, which can be obtained from
Eqs. (7.23); a short computation reveals that

g00 = −1 + (even) + 2

c5

(
V [3] + W [1]

)+ O(c−7), (12.111a)

g jk = δ jk + (even) + O(c−5), (12.111b)

g00 = −1 + (even) − 2

c5

(
V [3] + W [1]

)+ O(c−7), (12.111c)

g jk = δ jk + (even) + O(c−5), (12.111d)

√−g = 1 + (even) + 2

c5

(
V [3] − W [1]

)+ O(c−7), (12.111e)

where (even) designates terms of order c−2, c−4, and so on. As a consequence of Eq. (12.101)
we find that the odd terms in g0 j first appear at order c−6 and can be neglected. (We are
aware that 6 is an even number; we stubbornly call it odd because g0 j is generated mostly
by h0 j = 4V j/c3, whose leading radiation-reaction piece comes from V j [3]. Recall that
g0 j couples to v j/c in the energy-momentum tensor, converting the c−6 into a genuinely
odd term of order c−7.) From these expressions for the metric we obtain

γ = 1 + (even) + 1

c5

(
V [3] + W [1]

)+ O(c−7), (12.112)

and conclude that odd terms first appear at order c−5 in the energy-momentum tensor. For
example, the material contribution to �, given by c−2(−g)T 00, is

�matter = ρ∗
[

1 + (even) + 1

c5

(
3V [3] − W [1]

)+ O(c−7)

]
. (12.113)

The relation of Eq. (12.108) implies that the O(c−5) term actually vanishes, and this means
that there is no matter contribution to �[5].
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We next examine the Landau–Lifshitz pseudotensor. Its definition is provided by Eq. (6.5),
and we express it in the schematic form

(−g)tαβ

LL = c4

16πG
(∂h∂h)αβ. (12.114)

The overall factor of c4 on the right-hand side implies that a term of order c−7 in (∂h∂h)00

makes a contribution to �[5], a term of order c−8 in (∂h∂h)0 j makes a contribution to s j [5],
and a term of order c−9 in (∂h∂h) jk makes a contribution to τ jk[5]. The various derivatives
of the potentials are given by

∂nh00 = 4

c2

{
∂n V [0] + O(c−2) + c−5∂n V [5] + O(c−7)

}
, (12.115a)

∂nh0 j = 4

c3

{
∂n V j [0] + O(c−2) + c−3∂n V j [3] + O(c−5)

}
, (12.115b)

∂nh jk = 4

c4

{
∂nW jk[0] + O(c−2) + c−3∂n W jk[3] + O(c−5)

}
, (12.115c)

∂0h00 = 4

c3

{
∂t V [0] + O(c−2) + c−3∂t V [3] + O(c−5)

}
, (12.115d)

∂0h0 j = 4

c4

{
∂t V

j [0] + O(c−2) + c−3∂t V
j [3] + O(c−5)

}
, (12.115e)

∂0h jk = 4

c5

{
∂t W

jk[0] + O(c−2) + c−1∂t W
jk[1] + O(c−3)

}
, (12.115f)

in which we have included only the required terms; note that V [3] and W jk[1] do not appear
in ∂nh00 and ∂nh jk , because they do not depend on the spatial coordinates.

Referring to Eq. (6.5), we observe that a typical term in (∂h∂h)αβ actually has the form of
gg∂h∂h. (There are also terms of the form gggg∂h∂h, but they need not be distinguished
for the purpose of this argument.) There are two ways of generating terms that contain an
odd power of c−1. The first is to let ∂h∂h be odd in c−1, and to keep the factor gg even; the
second is to let gg be odd, and to keep ∂h∂h even.

In the first scenario we need to multiply an even term in one of the factors ∂h by an odd
term in the remaining ∂h. Using the expansions of Eqs. (12.115), we find that the dominant
scaling of such products is c−8, and that it is produced by the set

S1 =
{
∂ph00∂q h0 j , ∂ph00∂0h00, ∂ph00∂q h jk

}
. (12.116)

We also find that the set of products

S2 =
{
∂ph00∂q h00, ∂ph00∂q h jk, ∂ph00∂0h0 j , ∂ph0 j∂q h0k,

∂ph0 j∂0h00, ∂ph0 j∂0hkn, ∂0h00∂0h00, ∂0h00∂0h jk
}

(12.117)

participates at order c−9.
In the second scenario we let the factors of g supply the odd terms, and we keep ∂h∂h

even. The leading odd terms in g come at order c−5 in g00, order c−6 in g0 j , and order
c−5 in g jk . The leading even term in ∂h∂h comes from ∂ph00∂q h00 at order c−4. After



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-12 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 12:29

663 12.5 Radiation-reaction potentials

multiplication we find that the set

S3 =
{

h00∂ph00∂q h00, h jk∂ph00∂q h00
}

(12.118)

also participates at order c−9.
The next step is to decide how the various terms listed in S1, S2, and S3 enter in

the components of the Landau–Lifshitz pseudotensor. A careful examination of Eq. (6.5)
reveals that S1 appears only in (∂h∂h)0 j , whose dominant odd term therefore scales
as c−8; this produces a contribution to s j [5]. It reveals also that S2 and S3 appear in
(∂h∂h)00 and (∂h∂h) jk , whose dominant odd terms scale as c−9; this produces a contribution
to �[7] and τ jk[5]. We conclude from all this that the Landau–Lifshitz pseudotensor
makes contributions at the expected odd order to the source functions, but that there is no
contribution to �[5].

Finally we examine the harmonic pseudotensor (−g)tαβ

H . A similar sequence of steps
allows us to conclude that the leading odd terms make contributions to �[5], s j [5], and
τ jk[5]; the assumption contained in Eq. (12.106) is now fully justified. The contribution
to �[5]c2 is produced by −(c4/16πG)h jk∂ jkh00 on the right-hand side of Eq. (6.53), and
from Eqs. (12.105) and (12.107) we find that this is given by

�[5] = − 1

πG
W jk[1]∂ jk V [0] = 1

2π

...
I jk[0]∂ jk V [0]. (12.119)

To put this in its final form we recall that the [0] label refers to the Newtonian limit. The
quadrupole moment is therefore the Newtonian moment I jk , and V [0] is the Newtonian
potential, which was denoted U in previous chapters. What we have obtained, therefore, is

�[5] = 1

2π

...
I

jk
∂ jkU. (12.120)

We have also established that no other implicit, odd-order contribution to the effective
energy-momentum pseudotensor arises at 2.5pn order.

12.5.4 Radiation-reaction potentials: Final expressions

With �[5] in hand, we may now return to Eq. (12.107) and complete the computation of
V [5]. We need to evaluate the Poisson integral∫

M

�[5]

|x − x′| d3x ′,

in which �[5] is expressed as a function of t and x′. Making the substitution from
Eq. (12.120) gives ∫

M

�[5]

|x − x′| d3x ′ = 1

2π

...
I

jk
∫

M

∂ j ′k ′U (t, x′)
|x − x′| d3x ′, (12.121)

and to deal with this we appeal to integration by parts. We begin by writing

∂ j ′k ′U

|x − x′| = ∂ j ′

(
∂k ′U

|x − x′|
)

− ∂k ′U∂ j ′
1

|x − x′| . (12.122)
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Noting that ∂ j ′ |x − x′| = −∂ j |x − x′|, this is

∂ j ′k ′U

|x − x′| = ∂ j ′

(
∂k ′U

|x − x′|
)

+ ∂ j

(
∂k ′U

|x − x′|
)

. (12.123)

Applying this trick once more, we obtain

∂ j ′k ′U

|x − x′| = ∂ j ′

(
∂k ′U

|x − x′|
)

+ ∂ jk ′

(
U

|x − x′|
)

+ ∂ jk

(
U

|x − x′|
)

. (12.124)

Integration yields∫
M

∂ j ′k ′U

|x − x′| d3x ′ =
∮

∂M

∂k ′U

|x − x′| d Sj + ∂ j

∮
∂M

U

|x − x′| d Sk

+ ∂ jk

∫
M

U

|x − x′| d3x ′. (12.125)

Inspection of the surface integrals reveals that they scale as R−1 and do not give rise to
R-independent contributions to V [5]. The remaining volume integral is nothing but −2π X ,
up to an R-dependent constant, where X is the post-Newtonian superpotential defined in
Box 7.3. Our final expression for the integral is therefore −2π∂ jk X .

We have arrived at ∫
M

�[5]

|x − x′| d3x ′ = −...
I

jk
∂ jk X . (12.126)

This result might have been anticipated on the grounds that the left-hand side is a solution to
∇2(LHS) = −4π�[5] = −2

...
I

jk
∂ jkU = ∇2(−...

I
jk
∂ jk X ), since the superpotential is itself

a solution to ∇2 X = 2U . The discussion of Box 7.3, however, warns us that integration
of each side over a truncated domain M gives rise to boundary integrals that must be
examined closely. In this case we have the happy circumstance that all such integrals give
rise to R-dependent terms that can be ignored. In other circumstances the surface integrals
might have made important contributions, and the detailed calculation presented here would
have revealed them.

This computation completes the determination of the radiation-reaction potentials. Our
results are summarized in Box 12.3.

Box 12.3 Radiation-reaction potentials

The gravitational potentials in the near zone can be expanded as

h00 = 4

c2

{
U + O(c−2) + c−3V [3] + c−5V [5] + O(c−7)

}
,

h0 j = 4

c3

{
U j + O(c−2) + c−3V j [3] + O(c−5)

}
,

h jk = 4

c4

{
P jk + O(c−2) + c−1W jk[1] + c−3W jk[3] + O(c−5)

}
,
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in whichU := V [0],U j := V j [0], and P jk := W jk[0] are the leading-order, near-zone poten-
tials listed in Box 7.5. The terms that come with an odd power of c−1 are the radiation-reaction potentials,
and they are given by

V [3] = −1

6
G

...
I kk,

V [5] = G

[
−...

I
jk
∂ jk X − 1

6

...
I kk[2] − 1

60

(
r2δ jk + 2x j xk

) (5)

I jk

+ 1

30
x j

(5)

I jkk − 1

120

(5)

I j jkk

]
,

V j [3] = G

[
1

6
xk

(4)

I jk − 1

18

(4)

I jkk − 1

9

...
J

jkk
]
,

W jk[1] = −1

2
G

...
I

jk
,

W jk[3] = G

[
−1

2

...
I jk[2] − 1

12
r2

(5)

I jk + 1

18
x p

(5)

I jkp

+ 1

9
x p
( (4)

J jpk +
(4)

J kpj
)− 1

9

...
M

jkpp
]
.

They are expressed in terms of the Newtonian multipole moments

I jk :=
∫

ρ∗ x j xk d3x,

I jkn :=
∫

ρ∗ x j xk xn d3x,

I jknp :=
∫

ρ∗ x j xk xnx p d3x,

J jkn :=
∫

ρ∗(v j xk − vk x j
)
xn d3x,

M jknp :=
∫ (

ρ∗v jvk + p δ jk
)
xnx p d3x .

These are functions of t , and the number of overdots, or the number within an overlaid bracket, indicates the
number of differentiations with respect to t . The potentials also depend on c−2I jk[2], the post-Newtonian
correction to the quadrupole moment; an expression for this is not be required in subsequent calculations. In
addition, V [5] depends on the post-Newtonian superpotential X , defined by

X = G

∫
ρ∗|x − x′| d3x ′,

in which the mass densityρ∗ is expressed as a function of t and x′.
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12.6 Radiation reaction of fluid systems

Our main goal in this section is to calculate the radiation-reaction force density acting
within a fluid distribution of conserved mass density ρ∗, pressure p, and velocity field v.
We rely on the formulation of post-Newtonian fluid dynamics initiated in Sec. 8.4, and
work to obtain the terms of order c−5 that must be inserted within the post-Newtonian
generalization of Euler’s equation,

ρ∗ dv j

dt
= ρ∗∂ jU − ∂ j p + (even) + f j [rr]. (12.127)

The first two terms on the right-hand side govern the Newtonian dynamics of the fluid,
(even) designates the conservative corrections at 1pn and 2pn orders, and f j [rr] is the
radiation-reaction force density that we wish to obtain.

12.6.1 Metric, Christoffel symbols, andmatter variables

We first determine the pieces of the metric that are involved in the derivation of the radiation-
reaction force. These are obtained by inserting the potentials of Box 12.3 within Eqs. (7.20).
For our purposes here the non-linear terms are important, and after a straightforward
computation we obtain

g00 = −1 + 2c−2U + O(c−4) + 8c−5V [3] + O(c−6)

+ 2c−7
(
V [5] + W [3]

)− 24c−7V [3]U + O(c−8), (12.128a)

g0 j = O(c−3) + O(c−5) − 4c−6Vj [3] + O(c−7), (12.128b)

g jk = δ jk + O(c−2) + O(c−4) + 4c−5
(
W jk[1] − δ jk V [3]

)+ O(c−6), (12.128c)

g00 = −1 − 2c−2U + O(c−4) − 8c−5V [3] + O(c−6)

− 2c−7
(
V [5] + W [3]

)− 8c−7V [3]U + O(c−8), (12.128d)

g0 j = O(c−3) + O(c−5) − 4c−6V j [3] + O(c−7), (12.128e)

g jk = δ jk + O(c−2) + O(c−4) − 4c−5
(
W jk[1] − δ jk V [3]

)+ O(c−6), (12.128f)
√−g = 1 + O(c−2) + O(c−4) − 4c−5V [3] + O(c−6). (12.128g)

To arrive at these results we have taken into account the fact that W [1] = 3V [3].
The metric allows us to obtain the radiation-reaction terms in the relevant Christoffel

symbols, and another straightforward computation returns

c2�
j
00 = −∂ jU + O(c−2) + O(c−4) − c−5

×
(
∂ j V [5] + ∂ j W [3] + 4∂t V

j [3] − 4W jk[1]∂kU − 8V [3]∂ jU
)

+ O(c−6),

(12.129a)

c� j
0k = O(c−2) + O(c−4) + 2c−5

(
∂ j Vk[3] − ∂k Vj [3] + ∂t W jk[1]

− δ jk∂t V [3]
)

+ O(c−6), (12.129b)

�
j
kn = O(c−2) + O(c−4) + O(c−6). (12.129c)
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We observe that since the c−5 term in g00 depends on time only, there is no contribution at
order c−3 in �

j
00. This is connected to the fact, discussed back in Sec. 7.3.5, that the c−5

term in g00 can be removed by the coordinate transformation

t = t ′ − 2G

3c5
Ï kk(t ′) + O(c−7) , (12.130)

so that it has no physical effect on the motion of matter. This removal works only at order
c−5; the transformation generates corrections at order c−7 that depend on

...
I

kk , as can be
expected from the presence of −8V [3]∂ jU in �

j
00. Similarly, because the c−5 term in g jk

depends on time only, there is no contribution at order c−5 in the purely spatial components
of the Christoffel symbols.

We next turn to the matter variables, which were introduced in Sec. 12.5.3. We re-express
Eq. (12.112) as

γ = 1 + O(c−2) + O(c−4) + 4c−5V [3] + O(c−6) (12.131)

and observe that the terms of order c−5 cancel out in

γ
√−g = 1 + O(c−2) + O(c−4) + O(c−6). (12.132)

From Eq. (12.110) we obtain

c−2√−gT 00 = γρ∗ + O(c−2) + O(c−4) + O(c−6), (12.133a)

c−1√−gT 0 j = γρ∗v j + O(c−2) + O(c−4) + O(c−6), (12.133b)
√−gT jk = γρ∗v jvk + p δ jk + O(c−2) + O(c−4)

− 4c−5W jk[1]p + O(c−6). (12.133c)

12.6.2 Radiation-reaction force density

The post-Newtonian generalization of Euler’s equation is obtained by invoking the local
statement of momentum conservation, as expressed by Eq. (8.111):

0 = c−1∂t

(√−gT 0 j
)+ ∂k

(√−gT jk
)

+ �
j
00

(√−gT 00
)+ 2�

j
0k

(√−gT 0k
)+ �

j
kn

(√−gT kn
)
. (12.134)

After substitution of Eqs. (12.129) and (12.133) and simplification, we obtain

0 = ∂t

(
ρ∗v j

)+ ∂k

(
ρ∗v jvk

)− ρ∗∂ jU + ∂ j p + O(c−2) + O(c−4)

− c−5 f j [5] + O(c−6), (12.135)

where

f j [5] := ρ∗∂ j

(
V [5] + W [3]

)+ 4ρ∗∂t V
j [3] − 4ρ∗vk

(
∂ j Vk[3] − ∂k Vj [3] + ∂t W jk[1]

)
− 4ρ∗W jk[1]∂kU − 8ρ∗V [3]∂ jU + 4W jk[1]∂k p + 4V [3]∂ j p. (12.136)

We next involve the continuity equation ∂tρ
∗ + ∂k(ρ∗vk) = 0 and insert the radiation-

reaction potentials listed in Box 12.3. The end result is the Euler equation of Eq. (12.127),
with f j [rr] = c−5 f j [5] + O(c−7).
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Our final expression for the radiation-reaction force density is

f j [rr] = G

c5

(
−ρ∗ ...

I
pq

∂ j pq X + 2ρ∗ ...
I

jk
∂kU + 4

3
ρ∗ ...

I pp∂ jU − 2
...
I

jk
∂k p − 2

3

...
I

pp
∂ j p

+ 2ρ∗ (4)

I jkvk + 3

5
ρ∗ (5)

I jk xk − 1

5
ρ∗ (5)

I ppx j − 2

15
ρ∗ (5)

I jpp − 2

3
ρ∗ (4)

J jpp

)
+ O(c−7). (12.137)

The various multipole moments that appear in this expression are defined in Box 12.3.

12.6.3 Energy balance

Before we apply the radiation-reaction force of Eq. (12.137) to a system of well-separated
bodies, we verify that it leads to the expressions of energy, momentum, and angular-
momentum balance that were stated back in Sec. 12.2. We begin with energy balance.
According to Eq. (12.31), the total energy E of the fluid distribution should vary in time
according to

d E

dt
= −P = − G

5c5

...
I

〈 jk〉 ...
I

〈 jk〉 + O(c−7), (12.138)

where the expression for the energy flux P has been copied from Sec. 12.3.2.
For our purposes here it is sufficient to import an expression for the total energy E that

is accurate to the leading, Newtonian order, but it is still necessary to recognize that E
also contains terms at 1pn, 2pn, and 2.5pn orders. The Newtonian term was computed in
Sec. 8.4.5, and according to Eq. (8.134), we have that

E = T + � + Eint + O(c−2) + O(c−4) + c−5 E[5] + O(c−6), (12.139)

where T := 1
2

∫
ρ∗v2 d3x is the fluid’s total kinetic energy, � := − 1

2

∫
ρ∗U d3x its gravi-

tational potential energy, and Eint := ∫
ρ∗� d3x its total internal energy. The 1pn and 2pn

terms are not required in this discussion, but the 2.5pn term is important and its precise
identity will be revealed in due course.

We differentiate each term in Eq. (12.139) with respect to time. For the kinetic en-
ergy we get dT /dt = ∫

ρ∗v j (dv j/dt) d3x , in which we substitute the Euler equation
of Eq. (12.127); the contribution at order c−5 is

∫
v j f j [rr] d3x , the rate at which the

radiation-reaction force does work on the fluid. For the potential energy we get that d�/dt
is given exactly by Eq. (12.144d) below and gives no contribution at order c−5. For the
internal energy we have that d Eint/dt = ∫

ρ∗(d�/dt) d3x , in which we insert the exact
statement of the first law of thermodynamics, as stated back in Sec. 8.4; we have that
d�/dt = (p/ρ2)dρ/dt , where ρ is the fluid’s proper-mass density. Because ρ differs from
ρ∗ by a factor γ

√−g that contains no term of order c−5 – refer to Eq. (12.132) – we find
that d Eint/dt makes no contribution at 2.5pn order. Finally, observing that all c0, c−2, and
c−4 terms in E are conserved by virtue of the conservative dynamics at 2pn order, we are
left with ∫

v j f j [rr] d3x + d

dt

(
c−5 E[5]

)
= − G

5c5

...
I

〈 jk〉 ...
I

〈 jk〉 + O(c−7) (12.140)
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as a precise statement of energy balance. This equation states that up to an overall change
in total energy at 2.5pn order, the work done by the radiation-reaction force is equal to the
energy radiated by gravitational waves.

In situations in which the Newtonian dynamics of the system is periodic, or when the
evolution begins and ends in a static state, Eq. (12.140) can be averaged over time, and
the resulting coarse-grained statement of energy balance no longer involves E[5]. In this
formulation we would write

〈∫
v j f j [rr] d3x

〉
= − G

5c5

〈...
I

〈 jk〉 ...
I 〈 jk〉

〉
+ O(c−7), (12.141)

with the angular brackets indicating the averaging procedure. In this coarse-grained state-
ment we recover the expected equality between work done and radiated energy. This
statement is obviously less general than the fine-grained statement of Eq. (12.140), and is
subjected to the assumption that the initial and final values of E[5] must be equal.

Before we proceed with the derivation of Eq. (12.140) and the determination of E[5],
we re-introduce the tensorial generalizations of T and �,

T jk := 1

2

∫
ρ∗v jvk d3x, (12.142a)

� jk := −1

2
G

∫
ρ∗ρ∗′ (x − x ′) j (x − x ′)k

|x − x′|3 d3x ′d3x, (12.142b)

which were first encountered back in Sec. 1.4.3. In terms of these we have that T = δ jkT jk

and � = δ jk�
jk . These quantities are involved in a number of helpful identities, including

the familiar virial theorem

1

2
Ï jk = 2T jk + � jk + Pδ jk, (12.143)

with P := ∫
p d3x denoting the integrated pressure. Other identities include

Ṫ jk =
∫

ρ∗v( j∂k)U d3x −
∫

v( j∂k) p d3x + O(c−2), (12.144a)

�̇ jk − �̇δ jk =
∫

ρ∗v p∂pjk X d3x, (12.144b)

Ṫ =
∫

ρ∗v j∂ jU d3x −
∫

v j∂ j p d3x + O(c−2), (12.144c)

�̇ = −
∫

ρ∗v j∂ jU d3x . (12.144d)

These identities are similar to those encountered previously in Sec. 8.4.4, and it is a simple
matter to establish them. For example, Eq. (12.144a) follows directly from the definition
of T jk and involvement of Euler’s equation. Equation (12.144c) is obtained by taking the
trace of Eq. (12.144a). The derivation of Eq. (12.144b) is more involved, but Eq. (12.144d)
follows by taking its trace.
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To establish Eq. (12.144b) we begin with the definition of the superpotential, X =
G
∫

ρ∗′|x − x′| d3x ′, from which we obtain∫
ρ∗v p∂pjk X d3x = G

∫
ρ∗ρ∗′v p∂pjk |x − x′| d3x ′d3x (12.145a)

= G

∫
ρ∗′ρ∗v′p∂p′ j ′k ′ |x′ − x| d3x d3x ′ (12.145b)

= −G

∫
ρ∗ρ∗′v′p∂pjk |x − x′| d3x ′d3x (12.145c)

= 1

2
G

∫
ρ∗ρ∗′(v − v′)p∂pjk |x − x′| d3x ′d3x (12.145d)

= 1

2
G

d

dt

∫
ρ∗ρ∗′∂ jk |x − x′| d3x ′d3x . (12.145e)

We swap the identities of the integration variables to go from the first to the second line,
and to go to the third line we observe that ∂ j ′ |x − x′| = −∂ j |x − x′|. We symmetrize the
expressions in the fourth line, and in the fifth line we invoke an integral identity derived in
Box 8.4. The final result of Eq. (12.144b) follows after evaluating the remaining derivatives.

Returning to Eq. (12.140), we insert the force density of Eq. (12.137) and involve the
identities of Eq. (12.144) to evaluate the integrals. We simplify our expressions by setting∫

ρ∗v j d3x + O(c−2) = P j = 0, and obtain

c5

G

∫
v j f j [rr] d3x = −...

I jk

(
2Ṫ jk + �̇ jk

)+ 1

3

...
I pp

(
2Ṫ + �̇

)
+ 3

10

(5)

I jk İ jk − 1

10

(5)

I pp İ pp + 4
d

dt

(...
I

jkT jk
)

(12.146)

for the rate of work done. With the virial theorem of Eq. (12.143) we can express this as

c5

G

∫
v j f j [rr] d3x = −1

2

...
I

jk ...
I

jk + 1

6

...
I

pp ...
I

pp + 3

10

(5)

I jk İ jk − 1

10

(5)

I pp İ pp

+ 4
d

dt

(...
I

jkT jk
)
, (12.147)

and we simplify it further by distributing the time derivatives. We write, for example,

(5)

I jk İ jk = d

dt

( (4)

I jk İ jk − ...
I

jk Ï jk
)

+ ...
I

jk ...
I

jk
, (12.148)

and obtain the final expression

c5

G

∫
v j f j [rr] d3x = −1

5

...
I

jk ...
I

jk + 1

15

...
I

pp ...
I

pp + d

dt

(
4

...
I

jkT jk + 3

10

(4)

I jk İ jk − 1

10

(4)

I pp İ pp

− 3

10

...
I

jk Ï jk + 1

10

...
I

pp Ï pp

)
(12.149)

for the rate at which the radiation-reaction force does work on the fluid.
After simplification achieved by expressing I jk in terms of its trace and tracefree pieces,

we find that we do indeed recover the energy-balance statement of Eq. (12.140). The
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total-derivative term in Eq. (12.149) implies that

c−5 E[5] = − G

c5

(
4

...
I

jkT jk + 3

10

(4)

I 〈 jk〉 İ 〈 jk〉 − 3

10

...
I

〈 jk〉 Ï 〈 jk〉
)

(12.150)

is the 2.5pn contribution to the total energy.

12.6.4 Momentum balance

We next turn to momentum balance, and verify that the radiation-reaction force density of
Eq. (12.137) is compatible with the statement of Eq. (12.33),

d P j

dt
= −F j = O(c−7); (12.151)

the scaling of the momentum flux F j with c−7 was obtained in Sec. 12.3.2. The most
important observation here is that P j is conserved at 2.5pn order; radiation reaction acts
on the total momentum at 3.5pn order.

According to Eq. (8.145), the total momentum of the fluid distribution is given by

P j =
∫

ρ∗v j d3x + O(c−2) + O(c−4) + c−5 P j [5] + O(c−6), (12.152)

with c−5 P j [5] denoting the contribution at 2.5pn order. Differentiation with respect to t
and substitution of Eq. (12.127) gives rise to∫

f j [rr] d3x + d

dt

(
c−5 P j [5]

)
= O(c−7), (12.153)

which is our precise statement of momentum balance. We must verify that the integrated
radiation-reaction force is equal to a total time derivative, and the computation reveals the
identity of P j [5].

To evaluate the integral we require the identities∫
ρ∗∂ jU d3x = 0, (12.154a)∫

ρ∗∂ j pq X d3x = 0, (12.154b)∫
∂ j p d3x = 0. (12.154c)

The first is familiar; it was encountered back in Sec. 1.4.3 and then again in Sec. 8.4.4,
and its demonstration proceeds by inserting the Newtonian potential and noting that the
integrand is odd in the integration variables x and x′. The second identity is new, but it
follows after a similar sequence of steps. The third identity also is familiar, and it follows
by applying Gauss’s theorem and noting that p = 0 on any closed surface that bounds the
distribution of matter.

Integration of Eq. (12.137) yields∫
f j [rr] d3x = − 2

15

Gm

c5

( (5)

I jpp + 5
(4)

J jpp
)

+ O(c−7), (12.155)
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where m := ∫
ρ∗ d3x is the total material mass, and where the multipole moments I jkn

and Jjkn are defined in Box 12.3. To arrive at this expression we have used the fact that
since P j is conserved at 2.5pn order, we may work in the center-of-mass frame and set∫

ρ∗x j d3x = O(c−5) and
∫

ρ∗v j d3x = O(c−5). The integrated radiation-reaction force is
indeed a total time derivative, and from its expression we deduce that the 2.5pn contribution
to the total momentum is

c−5 P j [5] = 2

15

Gm

c5

( (4)

I jpp + 5
...
J

jpp
)
. (12.156)

We conclude that Eq. (12.137) is indeed compatible with the precise statement of momentum
balance.

12.6.5 Angular-momentum balance

Finally we examine the statement of angular-momentum balance, which is provided by
Eq. (12.35),

d J jk

dt
= −T jk = − 2G

5c5

(
Ï j p ...

I
kp − Ï kp ...

I
jp
)

+ O(c−7), (12.157)

where the expression for the angular-momentum flux T jk has been copied from Sec. 12.3.2;
it is easy to show that the result displayed here is equivalent to that of Eq. (12.68c), in spite
of the fact that our expression omits the STF projection of the quadrupole-moment tensor.

The total angular-momentum tensor of the fluid distribution is given by

J jk =
∫

ρ∗(x jvk − v j xk
)

d3x + O(c−2) + O(c−4) + c−5 J jk[5] + O(c−6), (12.158)

with c−5 J jk[5] denoting the contribution at 2.5pn order. The precise statement of angular-
momentum balance is∫ (

x j f k[rr] − xk f j [rr]
)

d3x + d

dt

(
c−5 J jk[5]

)
= − 2G

5c5

(
Ï j p ...

I
kp − Ï kp ...

I
jp
)

+ O(c−7),

(12.159)
and in this we must substitute Eq. (12.137).

To evaluate the integral on the left-hand side we require the identities∫
ρ∗x j∂kU d3x = � jk, (12.160a)∫

ρ∗x j∂kpq X d3x = � jkδpq + � j pδkq + � jqδkp − 3� jkpq , (12.160b)∫
x j∂k p d3x = −δ jk P, (12.160c)∫

ρ∗x jvk d3x = 1

2

(
İ jk + J jk

)+ O(c−2), (12.160d)

in which � jk is the tensorial quantity defined by Eq. (12.142),

� jkpq := −1

2
G

∫
ρ∗ρ∗′ (x − x ′) j (x − x ′)k(x − x ′)p(x − x ′)q

|x − x′|5 d3x ′d3x, (12.161)
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and P := ∫
p d3x is the integrated pressure. The first identity is familiar from the proof

of the virial theorem presented back in Sec. 1.4.3, and the second follows after a similar
sequence of steps. The third identity is an immediate consequence of integration by parts,
and the fourth follows directly from the definitions of I jk and J jk .

After substitution of Eq. (12.137) and involvement of the identities we obtain∫
x j f k[rr] d3x = G

c5

(
3

5
I jp

(5)

I kp + İ j p
(4)

I kp + J jp
(4)

I kp

)
, (12.162)

up to a number of terms that are symmetric in the pair of indices jk. This becomes∫
x j f k[rr] d3x = − 2G

5c5
Ï jk ...

I
kp + G

5c5

d

dt

(
3I jp

(4)

I kp + 2 İ j p ...
I

kp + 5J jp ...
I

kp
)

(12.163)

after distributing the time derivatives. Comparing with Eq. (12.159), we conclude that the
statement of angular-momentum balance is indeed satisfied, and deduce that the 2.5pn

contribution to the total angular-momentum tensor is

c−5 J jk[5] = − G

5c5

[
3
(
I jp

(4)

I kp − I kp
(4)

I jp
)+ 2

(
İ j p ...

I
kp − İ kp ...

I
jp)

+ 5
(
J jp ...

I
kp − J kp ...

I
jp)]

. (12.164)

In this expression J jk stands for the Newtonian piece of the angular-momentum tensor,
obtained from Eq. (12.158) by ignoring all contributions at higher post-Newtonian orders.

12.7 Radiation reaction of N -body systems

We now specialize the results of the preceding section to a case in which the fluid distribution
consists of N well-separated bodies. We wish to calculate the radiation-reaction force
acting on the center-of-mass of each body, and in order to achieve this we shall exploit the
techniques developed back in Chapter 9.

12.7.1 N bodies

As in Sec. 9.1 we assign to each body a label A = 1, 2, . . . , N , and for each body we define
the center-of-mass variables

m A :=
∫

A
ρ∗ d3x, (12.165a)

r A := 1

m A

∫
A
ρ∗ x d3x, (12.165b)

vA := 1

m A

∫
A
ρ∗ v d3x, (12.165c)

aA := 1

m A

∫
A
ρ∗ dv

dt
d3x ; (12.165d)
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the domain of integration is the region of space occupied by body A. We calculate the
radiation-reaction force F A[rr] acting on body A by inserting Eq. (12.127) within aA; we
find

F A[rr] = m AaA[rr] =
∫

A
f [rr] d3x, (12.166)

in which f [rr] is the radiation-reaction force density of Eq. (12.137).
To evaluate this we proceed as in Sec. 9.1.5 and decompose the Newtonian potential U

and the post-Newtonian superpotential X into internal and external pieces. We have, for
example, U = UA + U¬A, with

UA = G

∫
A

ρ∗(t, x′)
|x − x′| d3x ′ (12.167)

denoting the internal piece of the Newtonian potential, and

U¬A =
∑
B �=A

G

∫
B

ρ∗(t, x′)
|x − x′| d3x ′ (12.168)

denoting its external piece. As in Sec. 9.3 we exploit the assumption that the bodies are well
separated to express each external potential as a Taylor expansion about the center-of-mass
r A; we ignore the multipole structure of the body and retain only the leading term in the
expansion. The internal potentials require no approximation, and for these we invoke the
identities of Eq. (12.154), ∫

A
ρ∗∂ jUA d3x = 0, (12.169a)∫

A
ρ∗∂ j pq X A d3x = 0, (12.169b)∫

A
∂ j p d3x = 0, (12.169c)

which imply that the internal potentials and the pressure make no contribution to the
radiation-reaction force.

Following through with the computations, we quickly obtain

a j
A[rr] = G

c5

(
−...

I
pq

∂ j pq X¬A + 2
...
I

jk
∂kU¬A + 4

3

...
I

pp
∂ jU¬A + 2

(4)

I jkvk
A

+ 3

5

(5)

I jkr k
A − 1

5

(5)

I ppr j
A − 2

15

(5)

I jpp − 2

3

(4)

J jpp

)
+ O(c−7), (12.170)

in which it is understood that the external potentials are evaluated at x = r A after differ-
entiation. For a more concrete expression we must evaluate the external potentials. These
manipulations are familiar from Sec. 9.3.4, and we arrive at

∂ jU¬A = −
∑
B �=A

G MB

r2
AB

n j
AB, (12.171a)

∂ j pq X¬A = −
∑
B �=A

G MB

r2
AB

(
n j

ABδpq + n p
ABδ jq + nq

ABδ j p − 3n j
ABn p

ABnq
AB

)
, (12.171b)
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in which r AB := r A − r B , rAB := |r AB |, and nAB := r AB/rAB ; we take the liberty of
expressing the material mass m A in terms of the total mass-energy MA of Eq. (9.23), noting
that the difference is of order c−2 and therefore affects the radiation-reaction force at order
c−7 only.

Making the substitutions returns our final expression for the radiation-reaction force (per
unit mass) acting on body A:

a j
A[rr] = G

c5

(
−3

...
I

pq
∑
B �=A

G MB

r2
AB

n j
ABn p

ABnq
AB − 1

3

...
I

pp
∑
B �=A

G MB

r2
AB

n j
AB

+ 2
(4)

I jkvk
A + 3

5

(5)

I 〈 jk〉rk
A − 2

15

(5)

I jpp − 2

3

(4)

J jpp

)
+ O(c−7). (12.172)

To complete the evaluation of aA[rr] we should calculate the time derivatives of all the
multipole moments that occur in Eq. (12.172). Because the end result is long and unwieldy,
we postpone the pursuit of these details until we specialize our discussion to a two-body
system.

12.7.2 Two bodies

We next apply the general results of the preceding subsection to the case N = 2. Because
the total momentum P of the system is conserved at order c−5, we may set it equal
to zero and work in the barycentric frame in which r1 = (M2/m)r + O(c−2) and r2 =
−(M1/m)r + O(c−2), where m := M1 + M2 and r := r1 − r2. Equation (12.172) then
provides the radiation-reaction acceleration of the relative orbit, a[rr] := a1[rr] − a2[rr];
we get

a j [rr] = G

c5

[
−Gm

r2

(
3

...
I

pqn pnq + 1

3

...
I

pp
)

n j + 2
(4)

I jkvk + 3

5

(5)

I 〈 jk〉rk

]
+ O(c−7), (12.173)

where r := |r| and n := r/r . We observe that the multipole moments I jpp and Jjpp no
longer appear in this expression; as we saw back in Sec. 12.6.4, their role is limited to
providing a contribution to the total momentum at 2.5pn order.

The mass quadrupole moment is I jk = ηmr jrk , where η := M1 M2/m2 is the symmetric
mass ratio, and to evaluate its derivatives we rely on the Keplerian dynamics reviewed in
Sec. 3.2. From the Newtonian equation of motion a = −Gmn/r2 we deduce that vv̇ =
−Gmṙ/r2 and rr̈ = v2 − ṙ2 − Gm/r , up to corrections of order c−2, and a straightforward
computation reveals that

...
I

jk = −2ηm
Gm

r2

[
2
(
n jvk + v j nk

)− 3ṙ n j nk
]
, (12.174a)

(4)

I jk = −2ηm
Gm

r3

[
−9ṙ

(
n jvk + v j nk

)+ 4v jvk

+ (
15ṙ2 − 3v2 − Gm/r

)
n j nk

]
, (12.174b)

(5)

I jk = −2ηm
Gm

r4

[
4
(
15ṙ2 − 3v2 + Gm/r

)(
n jvk + v j nk

)
− 30ṙ v jvk + 15ṙ

(
3v2 − 7ṙ2

)
n j nk

]
. (12.174c)
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Making the substitutions in Eq. (12.173), we eventually arrive at our final expression for
the radiation-reaction acceleration:

a[rr] = 8

5
η

(Gm)2

c5r3

[(
3v2 + 17

3

Gm

r

)
ṙ n −

(
v2 + 3

Gm

r

)
v

]
. (12.175)

We return to this expression in Sec. 12.9, when we examine the orbital motion of a binary
system under the action of the radiation-reaction force.

12.8 Radiation reaction in alternative gauges

The radiation-reaction force density of Eq. (12.137), and the body forces of Eqs. (12.172)
and (12.175), are expressed in a harmonic coordinate system in which the spacetime metric
takes the form of Eq. (12.128). The metric and the resulting expressions for the radiation-
reaction force appear to be more complicated than they need to be. For example, the metric
involves the multipole moments I jk[2], I jknp, and M jknp, but these make no appearance in
the radiation-reaction force. As another example, f j [rr] involves the multipole moments
I jpp and Jjpp, in spite of the fact that they produce no physical consequences; as we saw,
their role is limited to providing a contribution to the total momentum P at 2.5pn order. In
view of this unnecessary complexity, it is worthwhile to seek coordinate transformations
that could simplify the form of the metric and of the radiation-reaction force. To explore
this freedom is our purpose in this section. We shall identify two radiation-reaction gauges
that offer an optimum of simplicity: the famous Burke–Thorne gauge of Eq. (12.198) below,
and the Schäfer gauge of Eq. (12.199).

12.8.1 Coordinate transformation

We follow the general framework of Sec. 8.3 and consider a class of coordinate transfor-
mations described by

t = t̄ + c−5α(t̄, x̄ j ) + c−7β(t̄, x̄ j ) + O(c−9), (12.176a)

x j = x̄ j + c−5h j (t̄, x̄ k) + O(c−7), (12.176b)

in which (t̄, x̄ j ) are the new coordinates, (t, x j ) are the old harmonic coordinates, and α,
β, and h j are functions that will be determined in the course of our investigation. The
transformation impacts the metric in the way described by Eq. (8.34). When we insert the
metric of Eq. (12.128) and read off the terms of relevant orders in the post-Newtonian
expansion, we find that the radiation-reaction terms become

ḡ00[5] = 2
(−∂t̄α + 4V [3]

)
, (12.177a)

ḡ00[7] = 2
(−∂t̄β + V [5] + W [3] − �U [5]

)+ 4U
(
∂t̄α − 6V [3]

)
, (12.177b)

ḡ0 j [4] = −∂j̄α, (12.177c)

ḡ0 j [6] = 2U∂j̄α − ∂j̄β + ∂t̄ h j − 4Vj [3], (12.177d)

ḡ jk[5] = ∂j̄ hk + ∂k̄h j + 4
(
W jk[1] − δ jk V [3]

)
. (12.177e)
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The original radiation-reaction potentials are listed in Box 12.3, and

c−5�U [5] := Ū − U (12.178)

is the difference between the Newtonian potential Ū expressed in terms of the new coordi-
nates (t̄, x̄ j ) and the original Newtonian potential U .

We see from Eqs. (12.177) that the transformation produces a new radiation-reaction
term in ḡ0 j , at order c−4. This term is undesirable, and we eliminate it by demanding that α

be independent of the spatial coordinates x̄ j . To complete the determination of α we also
choose to eliminate ḡ00[5], another undesirable term at 1.5pn order. This can be achieved
by setting ∂t̄α = 4V [3], or

α(t̄) = −2

3
G Ï pp. (12.179)

In this expression the mass quadrupole moment is expressed as a function of the new time
variable t̄ . The transformation t = t̄ − 2

3 (G/c5) Ï pp(t̄) + O(c−7) is the one displayed in
Eq. (12.130).

To calculate �U [5] we rely on the discussion of Sec. 8.3.6, in which a “boosted”
Newtonian potential Ū was obtained as a result of a post-Galilean transformation of the
coordinate system. The original Newtonian potential is

U (t, x) = G

∫
ρ∗(t, x′)
|x − x′| d3x ′, (12.180)

where it is understood that the source point x′ is simultaneous with the field point x in the
harmonic reference frame. The new potential is defined to be

Ū (t̄, x̄) = G

∫
ρ̄∗(t̄, x̄′)
|x̄ − x̄′| d3 x̄ ′, (12.181)

with x̄′ and x̄ simultaneous in the new reference frame. Because the relation between t and
t̄ is independent of the spatial coordinates at order c−5, simultaneity in one frame implies
simultaneity in the other frame, and we find that (x − x ′) j = (x̄ − x̄ ′) j + c−5�h j , where

�h j := h j (t̄, x̄) − h j (t̄, x̄′). (12.182)

Noting also that ρ∗ d3x ′ = ρ̄∗ d3 x̄ ′ – refer to Eq. (8.92) – we find that the original potential
can be expressed as

U = G

∫
ρ̄∗

|x̄ − x̄′|
(

1 − 1

c5

(x̄ − x̄ ′) j�h j

|x̄ − x̄′|2
)

d3 x̄ ′. (12.183)

In view of Eq. (12.178), this means that

�U [5] = G

∫
ρ̄∗(t̄, x̄′)

(x̄ − x̄ ′) j�h j

|x̄ − x̄′|3 d3 x̄ ′ (12.184)

is our final expression for the change in the Newtonian potential at order c−5.
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12.8.2 Two-parameter family of radiation-reaction gauges

To proceed with this exploration of coordinate transformations, we restrict our considera-
tions to radiation-reaction gauges in which

ḡ0 j [6] = 0, (12.185a)

ḡ jk[5] = 2a G
...
I

〈 jk〉 + 2b δ jk G
...
I

pp
, (12.185b)

where a and b are dimensionless parameters that can be chosen freely. As we shall see,
the choice of Eq. (12.185) does not fully exhaust the coordinate freedom, and additional
choices will be made to specify the form of ḡ00[7].

According to Eq. (12.177) and the potentials of Box 12.3, to achieve the required form
for ḡ jk[5] we need h j to be a solution to

∂j̄ hk + ∂k̄h j = 2(1 + a)G
...
I

〈 jk〉 + 2b δ jk G
...
I

pp
. (12.186)

A sufficiently general solution is

G−1h j = f j + [
(1 + a)

...
I

〈 jk〉 + b δ jk
...
I

pp]x̄ k, (12.187)

in which f j is an arbitrary function of t̄ that will be specified at a later stage. To achieve
the required form for ḡ0 j [6] we need β to be a solution to

G−1∂j̄β = ḟ j + 2

9

(4)

I jpp + 4

9

...
J

jpp +
[(

1

3
+ a

)
(4)

I 〈 jk〉 +
(

b − 2

9

)
δ jk

(4)

I pp

]
x̄ k, (12.188)

and in this case we find that

G−1β = γ +
(

ḟ j + 2

9

(4)

I jpp + 4

9

...
J

jpp
)

x̄ j

+ 1

2

[(
1

3
+ a

)
(4)

I 〈 jk〉 +
(

b − 2

9

)
δ jk

(4)

I pp

]
x̄ j x̄ k, (12.189)

in which γ is an arbitrary function of t̄ .
We next incorporate these results in a computation of ḡ00[7]. The first step is to insert

Eq. (12.187) within Eq. (12.184), which yields

�U [5] = (1 + a)G
...
I

〈 jk〉Ū jk + b G
...
I

ppŪ , (12.190)

where

Ū jk := G

∫
ρ̄∗ (x̄ − x̄ ′) j (x̄ − x̄ ′)k

|x̄ − x̄′|3 d3 x̄ ′. (12.191)

We bring this to its final form of

�U [5] = −(1 + a)G
...
I

〈 jk〉
∂j̄ k̄ X̄ + b G

...
I

ppŪ (12.192)

by invoking the identity ∂ jk X = δ jkU − U jk ; here X̄ is the superpotential expressed in
terms of the new coordinates.
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Making the substitutions in Eq. (12.177), we find that ḡ00[7] contains a term independent
of the spatial coordinates that can be eliminated by choosing

γ = −2

3
Ï pp[2] − 1

120

(4)

I ppqq − 1

9
M̈ ppqq . (12.193)

It also contains a term linear in x̄ j that can be eliminated by choosing

f j = − 2

15

...
I

jpp − 2

3
J̈ j pp. (12.194)

At this stage the coordinate freedom is exhausted, and the resulting expression for ḡ00[7] is

ḡ00[7] = 2a G
...
I

〈 jk〉
∂j̄ k̄ X̄ − 2b G

...
I

ppŪ −
[(

2

5
+ a

)
G

(5)

I 〈 jk〉 + b δ jk G
(5)

I pp

]
x̄ j x̄ k .

(12.195)
The calculation of the metric in the new coordinate system is now complete.

To summarize, the two-parameter family of radiation-reaction gauges is described by the
metric

g00 = −1 + 2

c2

(
U + U

)+ O(c−9), (12.196a)

g0 j = O(c−8), (12.196b)

g jk = δ jk + 2V jk + O(c−7), (12.196c)

with the radiation-reaction potentials

U = G

c5

{
a

...
I

〈 jk〉
∂ jk X − b

...
I

ppU − 1

2

[(
2

5
+ a

)
(5)

I 〈 jk〉 + b δ jk

(5)

I pp

]
x j xk

}
, (12.197a)

V jk = G

c5

(
a

...
I

〈 jk〉 + b δ jk
...
I

pp
)
. (12.197b)

This expression for the metric omits all terms of 1pn and 2pn orders that have nothing to
do with radiation reaction. To simplify the notation we have removed the (now redundant)
overbars on the coordinates and potentials.

Two special cases are especially interesting and simple. When we set a = b = 0 we find
that the radiation-reaction potentials become

U = − G

5c5

(5)

I 〈 jk〉x j xk,

V jk = 0; (12.198)

this choice defines the Burke–Thorne radiation-reaction gauge. This gauge is especially
attractive, because it encapsulates all radiation-reaction effects in a O(c−5) correction to
the Newtonian potential. On the other hand, when we set a = − 2

5 and b = 0 we find that
all terms involving the mass quadrupole moment differentiated five times disappear, and
we are left with

U = − 2G

5c5

...
I

〈 jk〉
∂ jk X,

V jk = − 2G

5c5

...
I

〈 jk〉; (12.199)

this choice defines the Schäfer radiation-reaction gauge.
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12.8.3 Radiation-reaction force

The computation of the radiation-reaction force density f j [rr] in the two-parameter family
of radiation-reaction gauges proceeds just as in Sec. 12.6. In this case we have that

√−g =
1 + V + O(c−7), γ = 1 + O(c−7), and the components of the energy-momentum tensor
are

c−2√−gT 00 = ρ∗ + O(c−7), (12.200a)

c−1√−gT 0 j = ρ∗v j + O(c−7), (12.200b)
√−gT jk = ρ∗v jvk + p δ jk − (

2V jk − δ jkV
)

p + O(c−7). (12.200c)

We use the notation V := δ jkV jk and continue to omit all terms of 1pn and 2pn orders that
have nothing to do with radiation reaction. The relevant Christoffel symbols are

c2�
j
00 = −∂ j

(
U + U

)+ 2V jk∂kU + O(c−7), (12.201a)

c� j
0k = ∂tV jk + O(c−7), (12.201b)

�
j
kn = O(c−7). (12.201c)

Making the substitutions in the momentum-conservation equation of Eq. (12.134), we arrive
at the post-Newtonian Euler equation of Eq. (12.127), with

f j [rr] = ρ∗∂ jU − 2ρ∗vk∂tV jk − 2V jk
(
ρ∗∂kU − ∂k p

)− V ∂ j p. (12.202)

When we next insert the radiation-reaction potentials of Eqs. (12.197), we obtain

f j [rr] = G

c5

{
a

...
I

〈pq〉
ρ∗∂ j pq X − 2a

...
I

〈 jk〉(
ρ∗∂kU − ∂k p

)− b
...
I

pp(3ρ∗∂ jU + ∂ j p
)

− 2ρ∗
(

a
(4)

I 〈 jk〉 + b δ jk

(4)

I pp
)
vk − ρ∗

[(
2

5
+ a

)
(5)

I 〈 jk〉 + b δ jk

(5)

I pp

]
xk

}
(12.203)

as our final expression for the radiation-reaction force density.
The force simplifies considerably in the Burke–Thorne gauge:

f j [rr] = − 2G

5c5
ρ∗ (5)

I 〈 jk〉xk . (12.204)

While its expression is more complicated in the Shäfer gauge, it is nevertheless useful
because the number of time derivatives acting on the quadrupole-moment tensor goes down
from five to four. This can be a great advantage in numerical work, because the estimation
of derivatives on a finite grid generates numerical noise that can be minimized with a
smaller number of derivatives. In some applications the term involving four derivatives can
be small compared with terms containing three derivatives; this occurs, for example, when
the system undergoes small oscillations and v2 is small compared with U (contrary to what
might be expected from the virial theorem).
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We next calculate the radiation-reaction force acting on the center-of-mass of each body
A within an N -body system. The steps involved are virtually identical to those encountered
previously in Sec. 12.7, and we arrive at

a j
A[rr] = G

c5

{
a

...
I

〈pq〉
∂ j pq X¬A − 2a

...
I

〈 jk〉
∂kU¬A − 3b

...
I

pp
∂ jU¬A

− 2
(

a
(4)

I 〈 jk〉 + b δ jk

(4)

I pp
)
vk

A −
[(

2

5
+ a

)
(5)

I 〈 jk〉 + b δ jk

(5)

I pp

]
rk

A

}
, (12.205)

where U¬A and X¬A are the potentials produced by the bodies external to A, evaluated
at x = r A after differentiation. Taking care of these manipulations, we obtain our final
expression

a j
A[rr] = G

c5

{
3
∑
B �=A

G MB

r2
AB

(
a

...
I

〈pq〉n p
ABnq

AB + b
...
I

pp
)

n j
AB

− 2
(

a
(4)

I 〈 jk〉 + b δ jk

(4)

I pp
)
vk

A −
[(

2

5
+ a

)
(5)

I 〈 jk〉 + b δ jk

(5)

I pp

]
rk

A

}
, (12.206)

in which r AB := r A − r B , rAB := |r AB |, and nAB := r AB/rAB .
The reduction to a two-body system produces

a j [rr] = G

c5

{
3

Gm

r2

(
a

...
I

〈pq〉n pnq + b
...
I

pp
)

n j

− 2
(

a
(4)

I 〈 jk〉 + b δ jk

(4)

I pp
)
vk −

[(
2

5
+ a

)
(5)

I 〈 jk〉 + b δ jk

(5)

I pp

]
rk

}
(12.207)

for the relative acceleration a[rr] := a1[rr] − a2[rr]. Completing the calculation with the
help of Eqs. (12.174), we finally arrive at

a[rr] = 8

5
η

(Gm)2

c5r3

{[(
18 + 15a − 45

4
b
)
v2 +

(2

3
− 10

3
a + 25

4
b
)Gm

r

−
(

25 + 25a − 75

4
b
)

ṙ2

]
ṙ n −

[(
6 + 35

6
a − 5

2
b
)
v2

−
(

2 + 35

6
a − 5

2
b
)Gm

r
−
(

15 + 35

2
a − 15

2
b
)

ṙ2

]
v

}
. (12.208)

In the Burke–Thorne gauge (a = b = 0) the relative acceleration reduces to

a[rr] = 8

5
η

(G M)2

c5r3

[(
18v2 + 2

3

G M

r
− 25ṙ2

)
ṙ n −

(
6v2 − 2

G M

r
− 15ṙ2

)
v

]
,

(12.209)
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while in the Schäfer gauge (a = −2/5, b = 0) we have

a[rr] = 8

5
η

(G M)2

c5r3

[(
12v2 + 2

G M

r
− 15ṙ2

)
ṙ n −

(
11

3
v2 + 1

3

G M

r
− 8ṙ2

)
v

]
.

(12.210)

In addition to these choices, it is interesting to note that the settings a = −2/3 and b = 4/9
produce

a[rr] = 8

5
η

(G M)2

c5r3

[(
3v2 + 17

3

G M

r

)
ṙ n −

(
v2 + 3

G M

r

)
v

]
, (12.211)

the same expression as in Eq. (12.175); the two-parameter family of radiation-reaction
gauges can therefore reproduce the original expression for the relative acceleration, which
was obtained in the harmonic gauge. It should be kept in mind that while the relative
accelerations do correspond when a = −2/3 and b = 4/9, the coordinate systems do not
coincide, and the radiation-reaction potentials are quite different in the two gauges. This
selection of parameters is often called the Damour–Deruelle gauge.

12.8.4 Balance equations

To finish our discussion of the two-parameter family of radiation-reaction gauges, we verify
that the radiation-reaction force density of Eq. (12.203) is compatible with the statements
of energy, momentum, and angular-momentum balance.

We begin with energy balance, and follow the developments of Sec. 12.6.3. Here the
precise statement of energy balance is more complicated than in Eq. (12.140), because
ρ �= ρ∗ in the two-parameter family of radiation-reaction gauges. Instead we have that

ρ = (1 − V)ρ∗ + O(c−7), (12.212)

up to corrections of 1pn and 2pn orders, and the presence of V affects the statement of the
first law of thermodynamics. The exact formulation, we recall, is d�/dt = (p/ρ2)dρ/dt ,
and this implies that

ρ∗ d�

dt
= (1 + V)

p

ρ∗
dρ∗

dt
− p ∂tV + O(c−7), (12.213)

where we use the fact that V depends on time only. The continuity equation satisfied by ρ∗

allows us to replace dρ∗/dt with −ρ∗∂ jv
j , and integrating over the volume occupied by

the fluid, we obtain

d Eint

dt
= (1 + V)

∫
v j∂ j p d3x − P ∂tV + O(c−7) (12.214)

for the rate of change of the fluid’s internal energy; here P := ∫
p d3x is the integrated

pressure. The terms in V contribute to the change in total energy at 2.5pn order, and instead
of Eq. (12.140) we find that∫

v j f j [rr] d3x+V

∫
v j∂ j p d3x−P ∂tV + d

dt

(
c−5 E[5]

)
= − G

5c5

...
I

〈 jk〉 ...
I

〈 jk〉+O(c−7)

(12.215)
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is the precise statement of energy balance in the two-parameter family of radiation-reaction
gauges. The integrals can be evaluated in the same way as in Sec. 12.6.3, and after some
calculations we confirm that the radiation-reaction force density of Eq. (12.203) is in-
deed compatible with energy balance. In the course of this computation we also find
that

c−5 E[5] = G

c5

[
4a

...
I

〈 jk〉T jk + 1

2

(
2

5
+ a

)( (4)

I 〈 jk〉 İ 〈 jk〉 − ...
I

〈 jk〉 Ï 〈 jk〉
)

+ b
...
I

pp(4T + 3P
)+ 1

2
b
( (4)

I pp İ qq − ...
I

pp Ï qq
)]

(12.216)

is the appropriate expression for the 2.5pn contribution to the total energy.
The statement of momentum balance requires no modification from Eq. (12.153), and

the computations carried out in Sec. 12.6.4 can easily be adapted to the two-parameter
family of radiation-reaction gauges. We confirm that the radiation-reaction force density of
Eq. (12.203) is indeed compatible with momentum balance, and that

c−5 P j [5] = 0 (12.217)

in these gauges; there is no contribution to the total momentum at 2.5pn order.
The same statements apply to the expression of angular-momentum balance. Here also

the precise statement of Eq. (12.159) requires no modification, and here also we find that
it is compatible with Eq. (12.203). The 2.5pn contribution to the total angular-momentum
tensor is given by

c−5 J jk[5] = G

c5

[(
2

5
+ a

)(
I jp

(4)

I kp − I kp
(4)

I jp
)

+ a
(

J jp ...
I

kp − J kp ...
I

jp
)

− 2

5

(
İ j p ...

I
kp − İ kp ...

I
jp
)]

(12.218)

in the two-parameter family of radiation-reaction gauges.

12.9 Orbital evolution under radiation reaction

In this last section of Chapter 12 we describe how the radiation-reaction force of Eq. (12.208)
affects the orbital motion of a two-body system. The system’s dynamics is dominated by
the Newtonian gravitational attraction between the two bodies, and the radiation-reaction
force creates a perturbation. We wish to determine the effect of this perturbing force over
a time scale that is much longer than the orbital period; we are primarily interested in the
secular effects of the radiation-reaction force. The Newtonian dynamics was investigated
in detail back in Sec. 3.2, and a formalism to describe perturbed Keplerian orbits, based on
osculating elliptical orbits and evolving orbital elements, was introduced in Sec. 3.3; our
analysis in this section employs this formalism as an essential foundation.
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12.9.1 Evolution of orbital elements

We return to Eq. (12.208) and substitute Keplerian expressions for r := r1 − r2 and
v := v1 − v2, which we decompose as r = r n and v = ṙ n + (r φ̇)λ, with φ̇ denoting
the orbital angular velocity. The unit vectors n and λ are tangent to the orbital plane
and mutually orthogonal; in Cartesian coordinates (x, y, z) oriented in such a way that
the orbital plane coincides with the surface z = 0, we have that n = [cos φ, sin φ, 0] and
λ = [− sin φ, cos φ, 0], where φ(t) is the angle between r and the x-axis. The Keplerian
relations are

r = p

1 + e cos f
, ṙ =

√
Gm

p
e sin f, r φ̇ =

√
Gm

p
(1 + e cos f ), (12.219)

where p is the semi-latus rectum, e the eccentricity, f := φ − ω the true anomaly, and ω

the longitude of pericenter. The orbital period is

P = 2π√
Gm

(
p

1 − e2

)3/2

, (12.220)

and p/(1 − e2) is the semi-major axis.
Making the substitutions in Eq. (12.208) returns

a[rr] = 8

5
η

(Gm)7/2

c5 p9/2
(1 + e cos f )3

[
(e sin f )A n − (1 + e cos f )B λ

]
, (12.221)

with

A := 44

3
+ 35

3
a − 5b + e

(
80

3
+ 125

6
a − 55

4
b

)
cos f

+ e2

[
2 + 5

3
a + 5

2
b +

(
10 + 15

2
a − 45

4
b

)
cos2 f

]
, (12.222a)

B := 4 + e

(
10 + 35

6
a − 5

2
b

)
cos f

− e2

[
9 + 35

3
a − 5b −

(
15 + 35

2
a − 15

2
b

)
cos2 f

]
. (12.222b)

We recall that a and b are parameters that specify the choice of radiation-reaction gauge. In
the Burke–Thorne gauge we set a = 0 and b = 0, in the Schäfer gauge we set a = − 2

5 and
b = 0, and the assignments a = −2/3 and b = 4/9 produce the harmonic-gauge expression
for the radiation-reaction force.

The effect of a perturbing force on the Keplerian orbital elements p, e, and ω was
described in detail back in Sec. 3.3. In this description, the orbital motion is described
at all times by the Keplerian relations of Eq. (12.219), but the orbital elements acquire a
time dependence from the perturbing force. This description is exact, and the method of
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osculating orbits is a powerful starting point for an approximate treatment of the orbital
evolution. The relevant equations are displayed in Eqs. (3.69); we have

dp

d f
= 2p3

Gm

1

(1 + ec)3
S, (12.223a)

de

d f
= p2

Gm

[
s

(1 + ec)2
R + e + 2c + ec2

(1 + ec)3
S
]
, (12.223b)

e
dω

d f
= p2

Gm

[
− c

(1 + ec)2
R + s(2 + ec)

(1 + ec)3
S
]
, (12.223c)

where c := cos f , s := sin f , R := n · a[rr] is the radial component of the perturbing
acceleration, and S := λ · a[rr] is the tangential component. These equations must be
supplemented with

dt

d f
=
√

p3

Gm

1

(1 + ec)2

{
1 − 1

e

p2

Gm

[
c

(1 + ec)2
R − 2 + ec

(1 + ec)3
sin f S

]}
, (12.224)

which describes how the orbit evolves in time; this equation can be integrated once the
system of Eqs. (12.223) has been solved.

To analyze the equations it is helpful to turn p into a dimensionless variable p := p/p∗

by dividing it by a representative scale p∗; this may, for example, be chosen as the initial
value p( f = 0). It is also helpful to introduce

ε := 8

5
η

(
Gm

c2 p∗

)5/2

(12.225)

as a dimensionless measure of the strength of the radiation-reaction force. Because the
orbital velocity v is comparable to

√
Gm/p∗ during the evolution, ε is of the same or-

der of magnitude as (v/c)5 and therefore quite small. Finally, it is helpful to make time
dimensionless by defining t := t/t∗, with t∗ :=

√
p∗3/(Gm).

In terms of these new variables the evolution equations are

dp
d f

= −2εp−3/2(1 + ec)B, (12.226a)

de

d f
= εp−5/2(1 + ec)

[
es2 A − (e + 2c + ec2)B

]
, (12.226b)

e
dω

d f
= −εp−5/2s(1 + ec)

[
ec A + (2 + ec)B

]
, (12.226c)

dt
d f

= p3/2

(1 + ec)2

{
1 − ε

(1 + ec)s

ep5/2

[
ec A + (2 + ec)B

]}
. (12.226d)
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Substitution of A and B returns expressions that are quite large. For our purposes below it
is sufficient to present their schematic structure, which is as follows:

dp
d f

= − ε

p3/2

[
8

(
1 + 7

8
e2

)
+ k p

1 cos f + k p
2 cos 2 f + k p

3 cos 3 f

]
, (12.227a)

de

d f
= − ε

p5/2

[
38

3
e

(
1 + 121

304
e2

)
+ ke

1 cos f + ke
2 cos 2 f + ke

3 cos 3 f

+ ke
4 cos 4 f + ke

5 cos 5 f

]
, (12.227b)

dω

d f
= − ε

ep5/2

[
kω

1 sin f + kω
2 sin 2 f + kω

3 sin 3 f + kω
4 sin 4 f + kω

5 sin 5 f

]
. (12.227c)

The various coefficients kn that come with the trigonometric functions depend on e as well
as the gauge parameters a and b. The schematic forms of Eq. (12.227) reveal that the
driving forces for p and e contain steady pieces that produce secular changes, in addition
to oscillatory pieces that average out after each orbital cycle. And as we can see, the
oscillatory pieces are gauge-dependent, while the secular pieces are independent of the
choice of gauge. The driving force for ω is entirely oscillatory.

12.9.2 Multi-scale analysis of orbital evolution

Apart from the post-Newtonian expansion that gave rise to the radiation-reaction force,
no approximations have entered the formulation of the orbital equations as displayed in
Eqs. (12.226). We now wish to integrate these equations, and we shall take advantage of the
fact that ε � 1 to find approximate solutions. We must, however, be cognizant of the fact
that changes in the orbital elements occur over two very distinct time scales. The first is
the orbital time scale P , which is short, and the second is the radiation-reaction time scale
Trr – refer to Eq. (12.88) – which is longer than P by a factor of order ε−1 � 1. In terms
of the true anomaly f , we have changes over the short angular scale of 2π , and changes
over the much longer scale ε−1. Our perturbative approach must allow us to probe these
widely separated scales; the method of choice is a multi-scale analysis, as presented in the
excellent book by our friend Carl Bender and his late colleague Steven Orszag (1978), and
summarized in Box 12.4.

Box 12.4 Multi-scale analysis

To introduce themethodwework through a simple example involving a damped harmonic oscillator. Wewish
to integrate the differential equation

ẍ + 2ε ẋ + x = 0

withboundary conditions x(0) = 1, ẋ(0) = 0, in a regime inwhichε � 1. Here all variables are dimen-
sionless, and an overdot indicates differentiationwith respect to t . The equation can be integrated exactly, and
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the solution is

x = e−εt
(

cos ωt + ε

ω
sin ωt

)
,

withω := √
1 − ε2. The solution reveals features that occur over widely separated time scales: there are

rapid oscillations over a time scale of order unity, and a slowdamping of the envelope over a time scale of order
ε−1 � 1. We would like to capture these features with a perturbative analysis of the differential equation.
A straightforward expansion of the solution in powers of ε would fail in this endeavor. Suppose that we

write x = x0(t) + εx1(t) + O(ε2), insert this within the differential equation, and equate terms of
like powers ofε to zero.Wewould obtain thedifferential equations ẍ0 + x0 = 0 and ẍ1 + x1 = −2ẋ0,
and these can be integrated in turn for x0(t) and x1(t). Keeping the boundary conditions in mind, we get
x0 = cos t and observe that the driving force for x1, equal to 2 sin t , oscillates at the same frequency
as the oscillator’s own natural frequency. This creates a resonant behavior that leads to unbounded growth,
as can be seen in the solution x1 = sin t − t cos t . The end result of this standard perturbative analysis
is an approximate solution

x = (1 − εt) cos t + ε sin t + O(ε2)

that becomes wholly inaccurate over times t � ε−1. This approximation, in particular, does not capture the
damping that occurs over the long time scale.
In a multi-scale treatment of this problem one introduces a slow-time variable t̃ := εt in addition to the

fast time t , and postulates a solution of the form x = x0(t̃, t) + εx1(t̃, t) + O(ε2), in which x0 and
x1 are assumed to be bounded functions. The original differential equation is generalized in such a way that
t̃ and t are treated as independent variables, and the total time derivative is interpreted as

d

dt
= ∂

∂t
+ ε

∂

∂ t̃
.

In our case we have that ẋ = ∂x0/∂t + ε∂x0/∂ t̃ + ε∂x1/∂t + O(ε2) and ẍ = ∂2x0/∂t2 +
2ε∂2x0/∂ t̃∂t + ε∂2x1/∂t2 + O(ε2), and the differential equation becomes the set of equations

∂2x0

∂t2
+ x0 = 0,

∂2x1

∂t2
+ x1 = −2

(
∂x0

∂t
+ ∂2x0

∂ t̃∂t

)
.

The solution to the first equation is x0 = A(t̃) cos t , in which the function A(t̃) plays the role of constant
of integration; this function cannot bedetermineduntilweproceed to thenext order.Weobserve that a second
solution to the differential equation, B(t̃) sin t , should in principle be added to the first; it will, however,
eventually be rejected by the boundary conditions.
At the next order we find that the driving force for x1 is now equal to2(A + A′) sin t , in which a prime

indicates differentiation with respect to t̃ . We recognize that such a resonant force would produce a growth
in t , and that this would violate our assumption that x1 should stay bounded. We eliminate this eventuality
by demanding that A(t̃) be a solution to A + A′ = 0, which implies that A = A0 exp(−t̃). Keeping
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the boundary conditions in mind, we find that the zeroth-order solution to the differential equation is

x = exp(−t̃) cos t + O(ε).

Aswe can see, this captures the essential aspects of the exact solution, including the damping that occurs over
the long time scale.
The zeroth-order solution can be refined by integrating what has become of the first-order differential

equation. We now have ∂2x1/∂t2 + x1 = 0, whose solution is x1 = C(t̃) sin t (up to the addition
of a second solution, which we discard by virtue of the boundary conditions). Once more we find that the
unknown functionC(t̃) cannot be determined until we proceed to the next order. It would, however, be de-
termined in the sameway, by ensuring that the driving force for x2 is free of a resonant term. Such an analysis
would reveal thatC = exp(−t̃), and the first-order solution to the differential equation is

x = exp(−t̃)
(
cos t + ε sin t

)+ O(ε2).

This captures evenmore of the exact solution, but the central message of this exercise is that x0 by itself does
a very fine job of reproducing the essential behavior of the exact solution.

General theory of multi-scale orbital evolution

We now perform a multi-scale analysis of the evolution equations for the orbital elements p,
e, and ω. Before we return to the specific situation that concerns us in this section (orbital
evolution under radiation reaction), we develop a fairly general formulation that can be
applied to many different situations. This formulation was devised by our friend Adam
Pound in his PhD dissertation (2010). Similar (but less general) formulations can be found
in a 1990 article by Lincoln and Will, and a 2004 paper by Mora and Will.

We collect the orbital elements into the vector μa , and express their evolution equations
as

dμa

d f
= εFa( f, μb), (12.228)

in which ε is a small parameter, and each driving force Fa is assumed to be periodic in f ,
so that Fa( f + 2π,μb) = Fa( f, μb). These equations are supplemented with

dt

d f
= T0( f, μa) + εT1( f, μa), (12.229)

which governs the behavior of the time function; T0 and T1 are also assumed to be periodic
in f . The exact specifications of Fa , T0, and T1 for our particular problem can be obtained
from Eqs. (12.223) and (12.224), but our considerations here are more general.

In a multi-scale analysis of these differential equations we postulate the existence of
solutions of the form

μa = μa
0( f̃ , f ) + εμa

1( f̃ , f ) + ε2μa
2( f̃ , f ) + O(ε3) (12.230)
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and

t = ε−1t−1( f̃ , f ) + t0( f̃ , f ) + εt1( f̃ , f ) + O(ε2), (12.231)

in which f̃ := ε f is the slow variable. Each function μa
n and tn is assumed to be periodic in

f . The presence of ε−1t−1 in t is required because the time variable grows secularly even
in the absence of a perturbation; when f̃ is of order unity and f of order ε−1, t also is of
order ε−1.

To proceed with Eqs. (12.228) we treat f̃ and f as independent variables and interpret a
total derivative with respect to f as

d

d f
= ∂

∂ f
+ ε

∂

∂ f̃
. (12.232)

Inserting Eq. (12.230) within the differential equations and equating like powers of ε, we
obtain

∂μa
0

∂ f
= 0, (12.233a)

∂μa
0

∂ f̃
+ ∂μa

1

∂ f
= Fa( f, μb

0), (12.233b)

∂μa
1

∂ f̃
+ ∂μa

2

∂ f
= μc

1∂c Fa( f, μb
0); (12.233c)

in the last equation the driving force Fa is differentiated with respect to μc, and the repeated
index indicates a summation over all orbital elements.

The equations of the system (12.233) can be integrated in turn. Equation (12.233a)
implies that μa

0 is a function of the slow variable f̃ only. To integrate Eq. (12.233b) we first
average the equation over a complete cycle of the fast variable. We use the notation

〈q〉( f̃ ) := 1

2π

∫ 2π

0
q( f̃ , f ) d f (12.234)

to indicate such an average; since f̃ and f are independent variables the integral is evaluated
while keeping f̃ fixed. Because the first term of Eq. (12.233b) is independent of f , its
average returns dμa

0/d f̃ . The average of the second term vanishes, because of the assumed
periodicity of μa

1. We are left with

dμa
0

d f̃
= 〈Fa〉(μb

0), (12.235)

a system of equations that determine μa
0( f̃ ). Subtracting this from Eq. (12.233b), we next

obtain ∂μa
1/∂ f = Fa − 〈Fa〉, which integrates to

μa
1 = μa

1,osc( f̃ , f ) + μa
1,sec( f̃ ), (12.236)

where

μa
1,osc =

∫ [
Fa( f, μb

0) − 〈Fa〉(μb
0)
]

d f (12.237)
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is a periodic function of f , and μa
1,sec acts as a constant of integration. This is determined

at the next order, by averaging Eq. (12.233c). The first term gives rise to dμa
1,sec/d f̃ , the

second term contributes nothing, and we arrive at

dμa
1,sec

d f̃
= 〈

μc
1,osc∂c Fa( f, μb

0)
〉
. (12.238)

We note that only μc
1,osc appears on the right-hand side, instead of the complete expression

μc
1, because the average of the term involving μa

1,sec vanishes. At this stage we have all the
ingredients required in the construction of μa to first order in ε; to obtain the terms of order
ε2 in Eq. (12.230) we would proceed to the next order.

We follow the same recipe to integrate Eq. (12.229). Skipping over the details, we find
that t−1 is a function of f̃ only determined by

dt−1

d f̃
= 〈T0〉(μa

0), (12.239)

and that t0 can be expressed as

t0 = t0,osc( f̃ , f ) + t0,sec( f̃ ) (12.240)

with

t0,osc =
∫ [

T0( f, μa
0) − 〈T0〉(μa

0)
]

d f (12.241)

and

dt0,sec

d f̃
= 〈

μb
1,osc∂bT0( f, μa

0) + T1( f, μa
0)
〉
. (12.242)

These equations allow us to construct t to zeroth order in ε; to obtain the terms of order ε

in Eq. (12.231) we would proceed to the next order.
The most important pieces of the orbital elements μa are those that grow secularly and

depend on the slow variable f̃ . These are contained in μa
0 and μa

1,sec, and a useful secular
approximation to the orbital elements is given by

μa
sec = μ0( f̃ ) + εμa

1,sec( f̃ ) + O(ε2); (12.243)

this ignores the unimportant periodic oscillations contained in μa
1,osc, which average out

after each orbital cycle. Similarly, a useful secular approximation to the time function is
given by

tsec = ε−1t−1( f̃ ) + t0,sec( f̃ ) + O(ε). (12.244)

It is important to understand that while the oscillatory terms μa
1,osc do not appear in these

equations, they are nevertheless required in the construction of the secular terms μa
1,sec and

t0,sec. This can be seen from Eqs. (12.238) and (12.242), which reveal that oscillations in
μa

1 can combine with oscillations in ∂c Fa( f, μb
0) and ∂bT0( f, μa

0) to produce secular terms.
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Radiation reaction

We now have all the required tools at our disposal, and we may return to the original
problem, the determination of the orbital evolution under radiation reaction. The orbital
elements are μa := (p, e, ω), and the driving forces Fa can be extracted from Eq. (12.227).
Their averages are easily computed, and Eq. (12.235) returns

dp0

d f̃
= −8p−3/2

0

(
1 + 7

8
e2

0

)
, (12.245a)

de0

d f̃
= −38

3
e0p

−5/2
0

(
1 + 121

304
e2

0

)
, (12.245b)

dω0

d f̃
= 0, (12.245c)

where μa
0 := (p0, e0, ω0) are the zeroth-order approximations to the orbital elements. From

Eq. (12.227) and (12.237) we also obtain the oscillatory first-order corrections,

p1,osc = − 1

p3/2
0

(
k p

1 sin f + 1

2
k p

2 sin 2 f + 1

3
k p

3 sin 3 f

)
, (12.246a)

e1,osc = − 1

p5/2
0

(
ke

1 sin f + 1

2
ke

2 sin 2 f + 1

3
ke

3 sin 3 f + 1

4
ke

4 sin 4 f + 1

5
ke

5 sin 5 f

)
,

(12.246b)

ω1,osc = 1

e0p
5/2
0

(
kω

1 cos f + 1

2
kω

2 cos 2 f + 1

3
kω

3 cos 3 f + 1

4
kω

4 cos 4 f + 1

5
kω

5 cos 5 f

)
.

(12.246c)

These are combined with derivatives of the driving forces to compute the right-hand side
of Eq. (12.238). We obtain

dp1,sec

d f̃
= de1,sec

d f̃
= 0, (12.247)

and conclude that there is no secular growth in p and e at first order in ε. The calculation
reveals also that dω1,sec/d f̃ �= 0, but we shall not be concerned with this small amount of
secular growth in ω.

Proceeding with the time function, we insert Eq. (12.226) within Eq. (12.239) and get

dt−1

d f̃
=
(

p0

1 − e2
0

)3/2

. (12.248)

From Eq. (12.242) we next obtain

dt0,sec

d f̃
= 0, (12.249)

and observe the absence of secular growth at zeroth order in ε.
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Conclusion

The multi-scale analysis of the orbital evolution equations is now completed. We have found
that the secular changes in the orbital elements are governed by the system of differential
equations

dp
d f

∣∣∣∣
sec

= −ε
8

p3/2

(
1 + 7

8
e2

)
+ O(ε3), (12.250a)

de

d f

∣∣∣∣
sec

= −ε
38e

3p5/2

(
1 + 121

304
e2

)
+ O(ε3), (12.250b)

dt
d f

∣∣∣∣
sec

=
(

p
1 − e2

)3/2

+ O(ε2), (12.250c)

in which we have removed the now-redundant suffixes on p, e, and t.
To display the equations in their final form we re-introduce the scales p∗ and t∗, substitute

ε from Eq. (12.225), and eliminate f . This yields

dp

dt

∣∣∣∣
sec

= −64

5
ηc

(
G M

c2 p

)3

(1 − e2)3/2

(
1 + 7

8
e2

)
, (12.251a)

de

dt

∣∣∣∣
sec

= −304

15
ηc

e

p

(
G M

c2 p

)3

(1 − e2)3/2

(
1 + 121

304
e2

)
. (12.251b)

These are the same equations that were obtained in Sec. 12.3.3 on the basis of averaged
statements of energy and angular-momentum balance – refer to Eqs. (12.86) and (12.87).
The treatment given here, based on a multi-scale analysis of the evolution equations, is
much more satisfactory than the earlier work: We were able to prove that Eqs. (12.251) do
indeed capture the secular behavior of the orbital elements, and that the fractional error
incurred is of order ε2.

In Figs. 12.3 and 12.4 we compare the approximate evolution obtained on the basis
of Eqs. (12.250) to an exact numerical integration of Eqs. (12.226). We can see that the
agreement is excellent.

12.10 Bibliographical notes

Radiation-reaction effects in electromagnetism are discussed in many textbooks, including
Jackson’s Classical Electrodynamics (1998). The treatment is usually restricted to point
charges, and much space is devoted to the curious fact that the radiation-reaction force
depends on the rate of change of the particle’s acceleration. The literature has debated this
issue endlessly, and many misconceptions have taken hold — don’t get us started. For a
well-balanced overview, refer to Gralla, Harte, and Wald (2009).

The shortwave approximation of Sec. 12.2 was first formulated by Isaacson (1968a and
1968b). The angular-momentum flux of gravitational waves was first calculated by Bryce
DeWitt in the early nineteen seventies, and his results were eventually published in DeWitt
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Fig. 12.3 Evolution of the dimensionless semi-latus rectum p under radiation reaction. The evolution begins with p = 20 and
e = 0.7, and it proceeds for 100 orbital cycles with ε = 0.1. Time is expressed in units of the initial orbital period P.
The exact curve (solid) displays oscillations around the mean curve (dashed), and it was obtained by numerical
integration of Eqs. (12.226). These computations were carried out in the Burke–Thorne gauge, with a = b = 0. The
mean curve is obtained on the basis of the secular approximation of Eqs. (12.250).
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Fig. 12.4 Evolution of the eccentricity e under radiation reaction. The details are as in Fig. 12.3.

(2011); the final expression also appeared in Thorne (1980). An alternative approach to the
description of radiative losses in general relativity, widely considered to be more rigorous
and convincing than the Landau–Lifshitz approach adopted here, was formulated by Bondi
and his colleagues. Representative papers are Sachs (1961 and 1962) and Bondi, van der
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Burg, and Metzner (1962). Though different, the Bondi and Landau–Lifshitz approaches
yield identical results.

Radiative losses of slowly-moving systems (Sec. 12.3), including binary stars, were first
explored by Peters and Mathews (1963), Peters (1964), Bekenstein (1973), and Fitchett
(1983). Wiseman’s beaming argument, presented in Box. 12.2, was published in Wiseman
(1992).

The first binary pulsar (Sec. 12.4) was discovered by Hulse and Taylor in 1974; their
discovery paper was published as Hulse and Taylor (1975). The first measurement of the
orbital damping caused by radiative losses was reported in Taylor, Fowler, and McCulloch
(1979). The numbers for PSR 1913+16 displayed in Table 12.1 and the following discussion
are taken from Weisberg, Nice, and Taylor (2010). The numbers for the double pulsar J0737-
3039 are taken from Kramer et al. (2006). Calculations to high post-Newtonian order of
radiative losses for inspiralling compact binaries are reviewed in Blanchet (2006). The
papers alluded to at the beginning of Sec. 12.4.3 are Favata, Hughes, and Holz (2004),
Baker et al. (2006), and Gonzalez et al. (2007). A recent review of numerical simulations
of black-hole superkicks is provided by Zlochower, Campanelli, and Lousto (2011).

The approach adopted in Secs. 12.5–12.7 to calculate radiation-reaction potentials and
forces is patterned after Pati and Will (2000 and 2001). The Burke–Thorne gauge featured
in Sec. 12.8 was formulated in Thorne (1969), Burke (1971), and Misner, Thorne, and
Wheeler (1973); see, however, the criticisms expressed by Walker and Will (1980). The
Schäfer gauge was formulated in Schäfer (1983), and the Damour–Deruelle gauge refers
to Damour and Deruelle (1981).

The multi-scale analysis of the orbital evolution of a binary system under radiation
reaction, presented in Sec. 12.9, is patterned after Lincoln and Will (1990) and Mora
and Will (2004). The general method is introduced in the excellent text by Bender and
Orzag (1978), and the application to osculating orbital elements was developed in Pound
(2010).

12.11 Exercises

12.1 Verify Eq. (12.40).

12.2 Use Eqs. (12.68) and (12.69) to show that the fluxes of energy, linear momentum,
and angular momentum from a Newtonian binary system can be expressed in the
form

P = 8

15
η2 c3

G

(
Gm

c2r

)4 (
12v2 − 11ṙ2

)
,

F j = − 8

105
�η2 c

G

(
Gm

c2r

)4 [
v j

(
50v2 − 38ṙ2 + 8

Gm

r

)
− ṙn j

(
55v2 − 45ṙ2 + 12

Gm

r

)]
,

T j = 8

5
η2 c

G

(
Gm

c2r

)3

h j

(
2v2 − 3ṙ2 + 2

Gm

r

)
.
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By incorporating a total time derivative into P j [5] and J j [5], show that the momen-
tum and angular-momentum fluxes can be written in the simpler forms

F j = − 4

15
�η2 c

G

(
Gm

c2r

)4

v j

(
13v2 − 15ṙ2

)
,

T j = 8

5
η2 c

G

(
Gm

c2r

)3

h j

(
4v2 − 9ṙ2

)
,

and verify that the momentum flux is in the direction of motion of the lighter body.

12.3 Consider a Keplerian, circular orbit of radius a in the x-y plane. Show that when
averaged over a complete orbit, the power emitted in gravitational waves per unit
solid angle is given by

dP

d�
= 1

2π
η2 c5

G

(
Gm

c2a

)5 (
1 + 6 cos2 θ + cos4 θ

)
,

where θ is the angle between the z-axis and N , the direction of emission. Verify that
the total power integrated over all solid angles agrees with Eq. (12.82a) when e = 0.

12.4 Consider a Keplerian orbit that is circular apart from the slow decrease in radius
a caused by the energy lost to gravitational radiation. As a function of η, m, and
the initial radius a0, calculate the lifetime of the binary system and the number
of completed orbits before the radiation reaction brings the radius to zero. Give
alternative expressions for the lifetime and number of orbits in terms of η, m, and
the initial orbital period P . Using these results, carry out the following estimates:
(a) the remaining lifetime of the Hulse–Taylor binary pulsar PSR 1913+16, with

M1 ≈ M2 ≈ 1.4M� and P = 7.75 hours (assume that the orbit is circular);
(b) the total time and number of cycles in the gravitational-wave signal from an

inspiralling binary system of two 1.4M� compact objects, from the time it
enters the LIGO–Virgo frequency band with a gravitational-wave frequency of
10 Hz to the end of the inspiral (when a = 0);

(c) the remaining lifetime of the Earth–Sun system.

12.5 The current eccentricity of the Hulse–Taylor binary pulsar orbit is e0 ≈ 0.6, and
its orbital period is 7.75 hours. Estimate the orbital eccentricity when gravitational
waves from the system first enter the LIGO–Virgo band at 10 Hz. You may treat the
eccentricity as if it were much smaller than unity when making your estimate.

12.6 Consider a binary pulsar of equal masses, for which the only orbital variables
measured initially are the orbital period P and the pericenter advance ω̇. Using the
approximation of small eccentricity, show that the lifetime of the system is given by

T = 5

128

(
6π

ω̇

)5/2 ( 1

P

)3/2

.

On the ω̇-P plane, plot the curve corresponding to T = 1 billion years. Plot the curve
from approximately 0.1 to 30 degrees per year for ω̇, and from approximately 1 to
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30 hours for P . How is the curve shifted when the initial orbit has a high eccentricity?
How does the curve change if the masses are not equal?

12.7 For an inspiralling circular orbit of two bodies, show that the accumulated velocity
of the center-of-mass as a result of radiative recoil is given by

V kick = 464

105
�η2

(
Gm

c2a

)4

c n .

Assume that the time scale for radiative losses is much longer than the orbital period,
so that d�/dt ∼ O(c−5/2)�2. Find the mass ratio that maximizes the recoil velocity.

12.8 Consider a two-body system on a Newtonian hyperbolic orbit described by

r = p

1 + e cos φ
,

dφ

dt
=
√

Gm

p3
(1 + e cos φ)2 ,

where m is the total mass, and p is the semi-latus rectum, related to the angular
momentum per unit reduced mass h by h2 = Gmp. The system’s energy is given by

E = η
Gm2

2p
(e2 − 1) .

Note that e > 1, E > 0, and the orbit comes in from infinity at φ = −arccos(−1/e),
reaching pericenter at φ = 0.
(a) Show that the total energy emitted in gravitational waves by the time the orbit

reaches pericenter is given by

�E = 32

5
η2 Gm2

p

(
Gm

c2 p

)5/2

f (e) ,

f (e) =
(

1 + 73

24
e2 + 37

96
e4

)
arccos

(
−1

e

)
+ 301

144

(
1 + 673

602
e2

)√
e2 − 1 .

(b) In the limit where e is close to unity, that is, when e = 1 + ε with ε � 1, show
that the energy loss will convert the hyperbolic orbit into a bound orbit before
pericenter when the following inequality is satisfied:

85πη

3ε

(
Gm

c2 p

)5/2

> 1 .

(c) Instead of the parameterization (p, ε) for the orbit, adopt (b, v∞), in which b is
an impact parameter and v∞ is the orbital velocity at infinite separation. These
quantities are defined by v2

∞ = (Gm/p)(e2 − 1) � 2(Gm/p)ε and h = bv∞.
Express the criterion of part (b) as an inequality for b.

(d) Show that the cross section σGW := πb2
capture for gravitational-wave capture is

given by

σGW = π

(
170π

3
η

)2/7 (Gm

c2

)2 ( c

v∞

)18/7

.

Such a process could play an important role in the evolution of dense star
clusters.
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12.9 Consider the radiation-reaction acceleration for a binary system. Given that it must
be a 2.5pn correction of the Newtonian acceleration, that it must vanish in the test-
body limit, and that it must be related to the mutual accelerations of the bodies, it is
possible to show, without doing any work, that it must be of the general form

a[rr] = 8η

5c3

Gm

r2

Gm

c2r

[(
a1v

2 + a2
Gm

r
+ a3ṙ2

)
ṙ n +

(
b1v

2 + b2
Gm

r
+ b3ṙ2

)
v

]
,

where m = M1 + M2, η = M1 M2/m, and an and bn are arbitrary parameters.
(a) Justify the form shown above.
(b) Calculate the energy and angular momentum losses, d E/dt and d J/dt , implied

by the proposed radiation-reaction acceleration.
(c) Using Newtonian theory, prove the following useful identity:

d

dt

(
v2s ṙ p

rq

)
= v2s−2ṙ p−1

rq+1

[
pv4 − pv2 Gm

r
− (p + q)v2ṙ2 − 2s

Gm

r
ṙ2

]
,

where p, q and s are integers.
(d) By considering the three cases (p, q, s) = (1, 2, 1), (3, 2, 0) and (1, 3, 0), use

the identity to show that the various numerical coefficients in the expressions for
d E/dt and d J/dt can be altered by absorbing total time derivatives into E[5]
and J[5]. Show that the freedom contained in these redefinitions is described
by a three-parameter family.

(e) Assume now that d E/dt and d J/dt , as calculated previously, and including the
three-parameter family of redefinitions, match the gravitational-wave fluxes of
energy and angular momentum, given by

P = 8

15
η2 c3

G

(
Gm

c2r

)4 (
12v2 − 11ṙ2

)
,

T j = 8

5
η2 c

G

(
Gm

c2r

)3

h j

(
2v2 − 3ṙ2 + 2

Gm

r

)
,

where h = r × v. Obtain constraints on the coefficients an and bn in a[rr].
Show that an and bn can be determined up to two unknown parameters. Show
that this freedom corresponds precisely to the two-parameter gauge freedom
described in Eq. (12.185), and that one can recover the Burke–Thorne, Schäfer,
and Damour–Deruelle expressions for the radiation-reaction acceleration. This
approach to finding the radiation-reaction acceleration was taken by Iyer and
Will (1995).

12.10 The radiative losses of energy and angular momentum cause the eccentricity of
a binary system to decrease. This implies that in the past, the eccentricity must
always have been larger. From Eqs. (12.251), which describe the secular evo-
lution of the orbital elements, show that as t → −∞, the eccentricity tends to
unity and the semilatus rectum p tends to a constant p∞. Show that they evolve
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according to

1 − e = 85

72
ln(p∞/p)

[
1 + O(1 − e)

]
.

Using Eq. (12.224), show that f → −π in the limit t → −∞, and thus that the two
bodies were at an infinite separation on a parabolic orbit. A rigorous analysis taking
into account the periodic variations in the orbital elements reveals that a generic
orbit in the infinite past is actually hyperbolic (e > 1), and that the parabolic orbit is
a special case.
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